Suppr超能文献

一种脑电图的随机极限环振荡器模型。

A stochastic limit cycle oscillator model of the EEG.

作者信息

Burke D P, de Paor A M

机构信息

Department of Electrical and Electronic Engineering, National University of Ireland, Dublin, Dublin 4, Belfield, Ireland.

出版信息

Biol Cybern. 2004 Oct;91(4):221-30. doi: 10.1007/s00422-004-0509-z. Epub 2004 Sep 10.

Abstract

We present an empirical model of the electroencephalogram (EEG) signal based on the construction of a stochastic limit cycle oscillator using Ito calculus. This formulation, where the noise influences actually interact with the dynamics, is substantially different from the usual definition of measurement noise. Analysis of model data is compared with actual EEG data using both traditional methods and modern techniques from nonlinear time series analysis. The model demonstrates visually displayed patterns and statistics that are similar to actual EEG data. In addition, the nonlinear mechanisms underlying the dynamics of the model do not manifest themselves in nonlinear time series analysis, paralleling the situation with real, non-pathological EEG data. This modeling exercise suggests that the EEG is optimally described by stochastic limit cycle behavior.

摘要

我们提出了一种基于伊藤微积分构建随机极限环振荡器的脑电图(EEG)信号实证模型。在这种公式中,噪声影响实际上与动力学相互作用,这与测量噪声的通常定义有很大不同。使用传统方法和非线性时间序列分析的现代技术,将模型数据的分析与实际EEG数据进行了比较。该模型展示出与实际EEG数据相似的视觉显示模式和统计数据。此外,该模型动力学背后的非线性机制在非线性时间序列分析中并未显现出来,这与真实的非病理性EEG数据情况相似。这个建模实验表明,EEG可以通过随机极限环行为得到最佳描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验