Austin Michael B, Bowman Marianne E, Ferrer Jean-Luc, Schröder Joachim, Noel Joseph P
Structural Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
Chem Biol. 2004 Sep;11(9):1179-94. doi: 10.1016/j.chembiol.2004.05.024.
Stilbene synthase (STS) and chalcone synthase (CHS) each catalyze the formation of a tetraketide intermediate from a CoA-tethered phenylpropanoid starter and three molecules of malonyl-CoA, but use different cyclization mechanisms to produce distinct chemical scaffolds for a variety of plant natural products. Here we present the first STS crystal structure and identify, by mutagenic conversion of alfalfa CHS into a functional stilbene synthase, the structural basis for the evolution of STS cyclization specificity in type III polyketide synthase (PKS) enzymes. Additional mutagenesis and enzymatic characterization confirms that electronic effects rather than steric factors balance competing cyclization specificities in CHS and STS. Finally, we discuss the problematic in vitro reconstitution of plant stilbenecarboxylate pathways, using insights from existing biomimetic polyketide cyclization studies to generate a novel mechanistic hypothesis to explain stilbenecarboxylate biosynthesis.
芪合酶(STS)和查尔酮合酶(CHS)各自催化从一个与辅酶A相连的苯丙素起始物和三分子丙二酰辅酶A形成一个四酮中间体,但使用不同的环化机制来为多种植物天然产物生成不同的化学支架。在此,我们展示了首个芪合酶晶体结构,并通过将苜蓿查尔酮合酶诱变转化为功能性芪合酶,确定了III型聚酮合酶(PKS)中芪合酶环化特异性进化的结构基础。进一步的诱变和酶学表征证实,是电子效应而非空间因素平衡了查尔酮合酶和芪合酶中相互竞争的环化特异性。最后,我们利用现有仿生聚酮环化研究的见解,讨论了植物芪羧酸酯途径在体外重建时存在的问题,以生成一个新的机制假说来解释芪羧酸酯的生物合成。