Li Yin, Shum Heung-Yeung, Tang Chi-Keung, Szeliski Richard
Computer Science Department, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
IEEE Trans Pattern Anal Mach Intell. 2004 Jan;26(1):45-62. doi: 10.1109/tpami.2004.1261078.
A new approach to computing a panoramic (360 degrees) depth map is presented in this paper. Our approach uses a large collection of images taken by a camera whose motion has been constrained to planar concentric circles. We resample regular perspective images to produce a set of multiperspective panoramas and then compute depth maps directly from these resampled panoramas. Our panoramas sample uniformly in three dimensions: rotation angle, inverse radial distance, and vertical elevation. The use of multiperspective panoramas eliminates the limited overlap present in the original input images and, thus, problems as in conventional multibaseline stereo can be avoided. Our approach differs from stereo matching of single-perspective panoramic images taken from different locations, where the epipolar constraints are sine curves. For our multiperspective panoramas, the epipolar geometry, to the first order approximation, consists of horizontal lines. Therefore, any traditional stereo algorithm can be applied to multiperspective panoramas with little modification. In this paper, we describe two reconstruction algorithms. The first is a cylinder sweep algorithm that uses a small number of resampled multiperspective panoramas to obtain dense 3D reconstruction. The second algorithm, in contrast, uses a large number of multiperspective panoramas and takes advantage of the approximate horizontal epipolar geometry inherent in multiperspective panoramas. It comprises a novel and efficient 1D multibaseline matching technique, followed by tensor voting to extract the depth surface. Experiments show that our algorithms are capable of producing comparable high quality depth maps which can be used for applications such as view interpolation.
本文提出了一种计算全景(360度)深度图的新方法。我们的方法使用由相机拍摄的大量图像,相机的运动被限制在平面同心圆上。我们对常规透视图像进行重采样以生成一组多视角全景图,然后直接从这些重采样的全景图计算深度图。我们的全景图在三个维度上均匀采样:旋转角度、反径向距离和垂直仰角。使用多视角全景图消除了原始输入图像中存在的有限重叠,因此可以避免传统多基线立体视觉中出现的问题。我们的方法不同于从不同位置拍摄的单视角全景图像的立体匹配,在单视角全景图像中,极线约束是正弦曲线。对于我们的多视角全景图,一阶近似下的极线几何由水平线组成。因此,任何传统的立体算法都可以稍加修改后应用于多视角全景图。在本文中,我们描述了两种重建算法。第一种是圆柱扫描算法,它使用少量重采样的多视角全景图来获得密集的三维重建。相比之下,第二种算法使用大量的多视角全景图,并利用多视角全景图中固有的近似水平极线几何。它包括一种新颖且高效的一维多基线匹配技术,随后通过张量投票来提取深度表面。实验表明,我们的算法能够生成质量相当高的深度图,可用于视图插值等应用。