Mori Masahiro, Abegg Mathias H, Gähwiler Beat H, Gerber Urs
Brain Research Institute, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Nature. 2004 Sep 23;431(7007):453-6. doi: 10.1038/nature02854.
The hippocampus, a brain structure essential for memory and cognition, is classically represented as a trisynaptic excitatory circuit. Recent findings challenge this view, particularly with regard to the mossy fibre input to CA3, the second synapse in the trisynaptic pathway. Thus, the powerful mossy fibre input to CA3 pyramidal cells might mediate both synaptic excitation and inhibition. Here we show, by recording from connected cell pairs in rat entorhinal-hippocampal slice cultures, that single action potentials in a dentate granule cell evoke a net inhibitory signal in a pyramidal cell. The hyperpolarization is due to disynaptic feedforward inhibition, which overwhelms monosynaptic excitation. Interestingly, this net inhibitory synaptic response changes to an excitatory signal when the frequency of presynaptic action potentials increases. The process responsible for this switch involves the facilitation of monosynaptic excitatory transmission coupled with rapid depression of inhibitory circuits. This ability to immediately switch the polarity of synaptic responses constitutes a novel synaptic mechanism, which might be crucial to the state-dependent processing of information in associative hippocampal networks.
海马体是对记忆和认知至关重要的脑结构,传统上被视为一个三突触兴奋性回路。最近的研究结果对这一观点提出了挑战,特别是关于苔藓纤维输入到CA3(三突触通路中的第二个突触)。因此,强大的苔藓纤维输入到CA3锥体细胞可能介导突触兴奋和抑制。在这里,我们通过记录大鼠内嗅-海马切片培养物中相连的细胞对,发现齿状颗粒细胞中的单个动作电位在锥体细胞中引发净抑制信号。超极化是由于双突触前馈抑制,其超过了单突触兴奋。有趣的是,当突触前动作电位的频率增加时,这种净抑制性突触反应会转变为兴奋性信号。负责这种转换的过程涉及单突触兴奋性传递的促进以及抑制性回路的快速抑制。这种立即切换突触反应极性的能力构成了一种新的突触机制,这可能对联想海马网络中信息的状态依赖性处理至关重要。