Suppr超能文献

通过全局耦合振荡器慢振荡的共轭对称性进行编码。

Encoding via conjugate symmetries of slow oscillations for globally coupled oscillators.

作者信息

Ashwin Peter, Borresen Jon

机构信息

Department of Mathematics, University of Exeter, Exeter EX4 4QE, United Kingdom.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Aug;70(2 Pt 2):026203. doi: 10.1103/PhysRevE.70.026203. Epub 2004 Aug 10.

Abstract

We study properties of the dynamics underlying slow cluster oscillations in two systems of five globally coupled oscillators. These slow oscillations are due to the appearance of structurally stable heteroclinic connections between cluster states in the noise-free dynamics. In the presence of low levels of noise they give rise to long periods of residence near cluster states interspersed with sudden transitions between them. Moreover, these transitions may occur between cluster states of the same symmetry, or between cluster states with conjugate symmetries given by some rearrangement of the oscillators. We consider the system of coupled phase oscillators studied by Hansel et al. [Phys. Rev. E 48, 3470 (1993)] in which one can observe slow, noise-driven oscillations that occur between two families of two cluster periodic states; in the noise-free case there is a robust attracting heteroclinic cycle connecting these families. The two families consist of symmetric images of two inequivalent periodic orbits that have the same symmetry. For N=5 oscillators, one of the periodic orbits has one unstable direction and the other has two unstable directions. Examining the behavior on the unstable manifold for the two unstable directions, we observe that the dimensionality of the manifold can give rise to switching between conjugate symmetry orbits. By applying small perturbations to the system we can easily steer it between a number of different marginally stable attractors. Finally, we show that similar behavior occurs in a system of phase-energy oscillators that are a natural extension of the phase model to two dimensional oscillators. We suggest that switching between conjugate symmetries is a very efficient method of encoding information into a globally coupled system of oscillators and may therefore be a good and simple model for the neural encoding of information.

摘要

我们研究了两个由五个全局耦合振荡器组成的系统中慢簇振荡背后的动力学特性。这些慢振荡是由于在无噪声动力学中簇态之间出现了结构稳定的异宿连接。在低噪声水平下,它们会导致在簇态附近长时间停留,并穿插着它们之间的突然转变。此外,这些转变可能发生在具有相同对称性的簇态之间,或者发生在由振荡器的某种重新排列给出的共轭对称的簇态之间。我们考虑了汉塞尔等人 [《物理评论E》48, 3470 (1993)] 研究的耦合相位振荡器系统,在该系统中可以观察到在两个两簇周期态族之间出现的由噪声驱动的慢振荡;在无噪声情况下,存在一个连接这些族的鲁棒吸引异宿环。这两个族由具有相同对称性的两个不等价周期轨道的对称图像组成。对于N = 5个振荡器,其中一个周期轨道有一个不稳定方向,另一个有两个不稳定方向。研究两个不稳定方向在不稳定流形上的行为,我们观察到流形的维度可以导致共轭对称轨道之间的切换。通过对系统施加小扰动,我们可以轻松地将其引导到多个不同的边缘稳定吸引子之间。最后,我们表明在一个相 - 能量振荡器系统中也会出现类似的行为,该系统是相位模型到二维振荡器的自然扩展。我们认为共轭对称之间的切换是一种将信息编码到全局耦合振荡器系统中的非常有效的方法,因此可能是信息神经编码的一个良好且简单的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验