Yoon Jungjoo, Mirica Liviu M, Stack T Daniel P, Solomon Edward I
Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Am Chem Soc. 2004 Oct 6;126(39):12586-95. doi: 10.1021/ja046380w.
The magnetic and electronic properties of a spin-frustrated ground state of an antiferromagnetically coupled 3-fold symmetric trinuclear copper complex (TrisOH) is investigated using a combination of variable-temperature variable-field magnetic circular dichroism (VTVH MCD) and powder/single-crystal EPR. Direct evidence for a low-lying excited S = (1)/(2) state from the zero-field split ground (2)E state is provided by the nonlinear dependence of the MCD intensity on 1/T and the nesting of the VTVH MCD isotherms. A consistent zero-field splitting (Delta) value of approximately 65 cm(-1) is obtained from both approaches. In addition, the strong angular dependence of the single-crystal EPR spectrum, with effective g-values from 2.32 down to an unprecedented 1.2, requires in-state spin-orbit coupling of the (2)E state via antisymmetric exchange. The observable EPR intensities also require lowering of the symmetry of the trimer structure, likely reflecting a magnetic Jahn-Teller effect. Thus, the Delta of the ground (2)E state is shown to be governed by the competing effects of antisymmetric exchange (G = 36.0 +/- 0.8 cm(-1)) and symmetry lowering (delta = 17.5 +/- 5.0 cm(-1)). G and delta have opposite effects on the spin distribution over the three metal sites where the former tends to delocalize and the latter tends to localize the spin of the S(tot) = (1)/(2) ground state on one metal center. The combined effects lead to partial delocalization, reflected by the observed EPR parallel hyperfine splitting of 74 x 10(-4) cm(-1). The origin of the large G value derives from the efficient superexchange pathway available between the ground d(x2-y2) and excited d(xy) orbitals of adjacent Cu sites, via strong sigma-type bonds with the in-plane p-orbitals of the bridging hydroxy ligands. This study provides significant insight into the orbital origin of the spin Hamiltonian parameters of a spin-frustrated ground state of a trigonal copper cluster.
利用变温变场磁圆二色性(VTVH MCD)和粉末/单晶电子顺磁共振(EPR)相结合的方法,研究了反铁磁耦合的三重对称三核铜配合物(TrisOH)自旋受挫基态的磁性和电子性质。MCD强度对1/T的非线性依赖以及VTVH MCD等温线的嵌套,为从零场分裂基态(2)E态到低激发S = (1)/(2)态提供了直接证据。两种方法都得到了约65 cm⁻¹的一致零场分裂(Δ)值。此外,单晶EPR谱的强角度依赖性,有效g值从2.32降至前所未有的1.2,需要通过反对称交换实现(2)E态的内态自旋-轨道耦合。可观测的EPR强度也要求三聚体结构的对称性降低,这可能反映了磁 Jahn-Teller 效应。因此,基态(2)E态的Δ由反对称交换(G = 36.0±0.8 cm⁻¹)和对称性降低(δ = 17.5±5.0 cm⁻¹)的竞争效应决定。G和δ对三个金属位点上的自旋分布有相反的影响,前者倾向于使S(tot) = (1)/(2)基态的自旋离域,而后者倾向于将其自旋定域在一个金属中心上。综合效应导致部分离域,这由观测到的74×10⁻⁴ cm⁻¹的EPR平行超精细分裂反映出来。大G值的起源来自相邻Cu位点的基态d(x² - y²)和激发态d(xy)轨道之间通过与桥连羟基配体的面内p轨道形成的强σ型键所提供的有效超交换途径。这项研究为三角铜簇自旋受挫基态的自旋哈密顿参数的轨道起源提供了重要的见解。