Ethier C Ross, Read A Thomas, Chan Darren
Departments of Mechanical and Industrial Engineering, and Ophthalmology, University of Toronto, Toronto, Ontario, Canada.
Biophys J. 2004 Oct;87(4):2828-37. doi: 10.1529/biophysj.103.038133.
Aqueous humor drains from the eye through Schlemm's canal, a small endothelial-lined collecting duct. Schlemm's canal endothelial cells may be important in controlling the pressure within the eye (and hence are of interest in glaucoma), and are subject to an unusual combination of shear stress and a basal-to-apical pressure gradient. We sought to characterize this biomechanical environment and determine its effects on F-actin architecture in situ. A theoretical model of flow in Schlemm's canal was used to estimate shear stresses applied to endothelial cells by flowing aqueous humor. Alignment of Schlemm's canal endothelial cells in human eyes was quantified by scanning electron microscopy. F-actin architecture was visualized by fluorescent labeling and compared for closely adjacent cells exposed to different biomechanical environments. We found that, despite the relatively low flow rate of aqueous humor, shear stresses experienced by Schlemm's canal endothelial cells could reach those in the arterial system. Schlemm's canal endothelial cells showed a statistically significant preferential alignment, consistent with a shear-mediated effect. Schlemm's canal endothelial cells subjected to a basal-to-apical pressure gradient due to transendothelial flow showed a prominent marginal band of F-actin with relatively few cytoplasmic filaments. Adjacent cells not subject to this gradient showed little marginal F-actin, with a denser cytoplasmic random network. We conclude that Schlemm's canal endothelial cells experience physiologically significant levels of shear stress, promoting cell alignment. We speculate that this may help control the calibre of Schlemm's canal. F-actin distribution depends critically on the presence or absence of transendothelial flow and its associated pressure gradient. In the case of this pressure gradient, mechanical reinforcement around the cell periphery by F-actin seems to be critical.
房水通过施莱姆管(一条内衬内皮细胞的小集合管)从眼睛排出。施莱姆管内皮细胞在控制眼内压力方面可能很重要(因此在青光眼研究中备受关注),并且承受着剪切应力和从基底到顶端的压力梯度这一不同寻常的组合。我们试图描述这种生物力学环境,并确定其对原位F - 肌动蛋白结构的影响。利用施莱姆管内流动的理论模型来估计房水流动对内皮细胞施加的剪切应力。通过扫描电子显微镜对人眼中施莱姆管内皮细胞的排列进行量化。通过荧光标记使F - 肌动蛋白结构可视化,并对暴露于不同生物力学环境的相邻细胞进行比较。我们发现,尽管房水的流速相对较低,但施莱姆管内皮细胞所承受的剪切应力可达到动脉系统中的水平。施莱姆管内皮细胞表现出具有统计学意义的优先排列,这与剪切介导的效应一致。由于跨内皮流动而承受从基底到顶端压力梯度的施莱姆管内皮细胞显示出F - 肌动蛋白的明显边缘带,而细胞质细丝相对较少。未承受这种梯度的相邻细胞几乎没有边缘F - 肌动蛋白,细胞质中是更密集的随机网络。我们得出结论,施莱姆管内皮细胞承受着具有生理意义水平的剪切应力,促进细胞排列。我们推测这可能有助于控制施莱姆管的管径。F - 肌动蛋白的分布严重依赖于跨内皮流动及其相关压力梯度的存在与否。在存在这种压力梯度的情况下,F - 肌动蛋白在细胞周边的机械增强作用似乎至关重要。