Suppr超能文献

钠离子驱动鞭毛定子组件PomA细胞质结构域中保守带电残基及其他残基的氨基酸取代的协同效应。

Concerted effects of amino acid substitutions in conserved charged residues and other residues in the cytoplasmic domain of PomA, a stator component of Na+-driven flagella.

作者信息

Fukuoka Hajime, Yakushi Toshiharu, Homma Michio

机构信息

Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-Ku, Nagoya 464-8602, Japan.

出版信息

J Bacteriol. 2004 Oct;186(20):6749-58. doi: 10.1128/JB.186.20.6749-6758.2004.

Abstract

PomA is a membrane protein that is one of the essential components of the sodium-driven flagellar motor in Vibrio species. The cytoplasmic charged residues of Escherichia coli MotA, which is a PomA homolog, are believed to be required for the interaction of MotA with the C-terminal region of FliG. It was previously shown that a PomA variant with neutral substitutions in the conserved charged residues (R88A, K89A, E96Q, E97Q, and E99Q; AAQQQ) was functional. In the present study, five other conserved charged residues were replaced with neutral amino acids in the AAQQQ PomA protein. These additional substitutions did not affect the function of PomA. However, strains expressing the AAQQQ PomA variant with either an L131F or a T132M substitution, neither of which affected motor function alone, exhibited a temperature-sensitive (TS) motility phenotype. The double substitutions R88A or E96Q together with L131F were sufficient for the TS phenotype. The motility of the PomA TS mutants immediately ceased upon a temperature shift from 20 to 42 degrees C and was restored to the original level approximately 10 min after the temperature was returned to 20 degrees C. It is believed that PomA forms a channel complex with PomB. The complex formation of TS PomA and PomB did not seem to be affected by temperature. Suppressor mutations of the TS phenotype were mapped in the cytoplasmic boundaries of the transmembrane segments of PomA. We suggest that the cytoplasmic surface of PomA is changed by the amino acid substitutions and that the interaction of this surface with the FliG C-terminal region is temperature sensitive.

摘要

PomA是一种膜蛋白,是弧菌属钠驱动鞭毛马达的必需组成部分之一。大肠杆菌MotA是PomA的同源物,其胞质带电残基被认为是MotA与FliG C端区域相互作用所必需的。先前的研究表明,在保守带电残基(R88A、K89A、E96Q、E97Q和E99Q;AAQQQ)中具有中性取代的PomA变体具有功能。在本研究中,在AAQQQ PomA蛋白中,另外五个保守带电残基被中性氨基酸取代。这些额外的取代并不影响PomA的功能。然而,表达带有L131F或T132M取代的AAQQQ PomA变体的菌株(这两种取代单独都不影响马达功能)表现出温度敏感(TS)运动表型。R88A或E96Q与L131F的双重取代足以产生TS表型。PomA TS突变体的运动在温度从20℃转变为42℃时立即停止,并在温度恢复到20℃后约10分钟恢复到原始水平。据信PomA与PomB形成通道复合物。TS PomA和PomB的复合物形成似乎不受温度影响。TS表型的抑制突变定位在PomA跨膜区段的胞质边界。我们认为,氨基酸取代改变了PomA 的胞质表面,并且该表面与FliG C端区域的相互作用对温度敏感。

相似文献

6
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.
8
Hybrid motor with H(+)- and Na(+)-driven components can rotate Vibrio polar flagella by using sodium ions.
J Bacteriol. 1999 Oct;181(20):6332-8. doi: 10.1128/JB.181.20.6332-6338.1999.
10
Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.
J Bacteriol. 1997 Aug;179(16):5104-10. doi: 10.1128/jb.179.16.5104-5110.1997.

引用本文的文献

1
2
Expansion of Necrosis Depending on Hybrid Motor-Driven Motility of in a Murine Wound Infection Model.
Microorganisms. 2020 Dec 22;9(1):10. doi: 10.3390/microorganisms9010010.
3
Voltage vs. Ligand II: Structural insights of the intrinsic flexibility in cyclic nucleotide-gated channels.
Channels (Austin). 2019 Dec;13(1):382-399. doi: 10.1080/19336950.2019.1666456.
4
The role of conserved charged residues in the bidirectional rotation of the bacterial flagellar motor.
Microbiologyopen. 2018 Aug;7(4):e00587. doi: 10.1002/mbo3.587. Epub 2018 Mar 24.
6
Loss of FliL alters Proteus mirabilis surface sensing and temperature-dependent swarming.
J Bacteriol. 2015 Jan 1;197(1):159-73. doi: 10.1128/JB.02235-14. Epub 2014 Oct 20.
8
Temperature dependences of torque generation and membrane voltage in the bacterial flagellar motor.
Biophys J. 2013 Dec 17;105(12):2801-10. doi: 10.1016/j.bpj.2013.09.061.

本文引用的文献

5
Solubilization and purification of the MotA/MotB complex of Escherichia coli.
Biochemistry. 2004 Jan 13;43(1):26-34. doi: 10.1021/bi035405l.
7
Helix rotation model of the flagellar rotary motor.
Biophys J. 2003 Aug;85(2):843-52. doi: 10.1016/S0006-3495(03)74524-X.
8
Flagellar movement driven by proton translocation.
FEBS Lett. 2003 Jun 12;545(1):86-95. doi: 10.1016/s0014-5793(03)00397-1.
9
Ion-coupling determinants of Na+-driven and H+-driven flagellar motors.
J Mol Biol. 2003 Mar 21;327(2):453-63. doi: 10.1016/s0022-2836(03)00096-2.
10
The rotary motor of bacterial flagella.
Annu Rev Biochem. 2003;72:19-54. doi: 10.1146/annurev.biochem.72.121801.161737. Epub 2002 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验