Schug A, Herges T, Wenzel W
Forschungszentrum Karlsruhe, Institut für Nanotechnologie, 76021 Karlsruhe, Germany.
Proteins. 2004 Dec 1;57(4):792-8. doi: 10.1002/prot.20290.
All-atom protein structure prediction from the amino acid sequence alone remains an important goal of biophysical chemistry. Recent progress in force field development and validation suggests that the PFF01 free-energy force field correctly predicts the native conformation of various helical proteins as the global optimum of its free-energy surface. Reproducible protein structure prediction requires the availability of efficient optimization methods to locate the global minima of such complex potentials. Here we investigate an adapted version of the parallel tempering method as an efficient parallel stochastic optimization method for protein structure prediction. Using this approach we report the reproducible all-atom folding of the three-helix 40 amino acid HIV accessory protein from random conformations to within 2.4 A backbone RMS deviation from the experimental structure with modest computational resources.
仅从氨基酸序列预测全原子蛋白质结构仍然是生物物理化学的一个重要目标。力场开发和验证方面的最新进展表明,PFF01自由能场能正确地将各种螺旋蛋白的天然构象预测为其自由能表面的全局最优解。可重复的蛋白质结构预测需要高效的优化方法来定位此类复杂势函数的全局最小值。在此,我们研究了并行回火方法的一个改编版本,作为一种用于蛋白质结构预测的高效并行随机优化方法。使用这种方法,我们报告了由随机构象开始的40个氨基酸的三螺旋HIV辅助蛋白可重复的全原子折叠,其主链均方根偏差与实验结构相差在2.4 Å以内,且计算资源需求适中。