Kitaura Hideki, Sands Mark S, Aya Kunihiko, Zhou Ping, Hirayama Teruhisa, Uthgenannt Brian, Wei Shi, Takeshita Sunao, Novack Deborah Veis, Silva Matthew J, Abu-Amer Yousef, Ross F Patrick, Teitelbaum Steven L
Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA.
J Immunol. 2004 Oct 15;173(8):4838-46. doi: 10.4049/jimmunol.173.8.4838.
The marrow stromal cell is the principal source of the key osteoclastogenic cytokine receptor activator of NF-kappaB (RANK) ligand (RANKL). To individualize the role of marrow stromal cells in varying states of TNF-alpha-driven osteoclast formation in vivo, we generated chimeric mice in which wild-type (WT) marrow, immunodepleted of T cells and stromal cells, is transplanted into lethally irradiated mice deleted of both the p55 and p75 TNFR. As control, similarly treated WT marrow was transplanted into WT mice. Each group was administered increasing doses of TNF-alpha. Exposure to high-dose cytokine ex vivo induces exuberant osteoclastogenesis irrespective of in vivo TNF-alpha treatment or whether the recipient animals possess TNF-alpha-responsive stromal cells. In contrast, the osteoclastogenic capacity of marrow treated with lower-dose TNF-alpha requires priming by TNFR-bearing stromal cells in vivo. Importantly, the osteoclastogenic contribution of cytokine responsive stromal cells in vivo diminishes as the dose of TNF-alpha increases. In keeping with this conclusion, mice with severe inflammatory arthritis develop profound osteoclastogenesis and bone erosion independent of stromal cell expression of TNFR. The direct induction of osteoclast recruitment by TNF-alpha is characterized by enhanced RANK expression and sensitization of precursor cells to RANKL. Thus, osteolysis attending relatively modest elevations in ambient TNF-alpha depends upon responsive stromal cells. Alternatively, in states of severe periarticular inflammation, TNF-alpha may fully exert its bone erosive effects by directly promoting the differentiation of osteoclast precursors independent of cytokine-responsive stromal cells and T lymphocytes.
骨髓基质细胞是关键的破骨细胞生成细胞因子——核因子κB受体激活蛋白(RANK)配体(RANKL)的主要来源。为了个体化研究骨髓基质细胞在体内肿瘤坏死因子-α(TNF-α)驱动的不同状态破骨细胞形成中的作用,我们构建了嵌合小鼠,即将野生型(WT)骨髓(T细胞和基质细胞免疫耗竭)移植到同时缺失p55和p75肿瘤坏死因子受体(TNFR)的经致死性照射的小鼠体内。作为对照,将同样处理的WT骨髓移植到WT小鼠体内。每组给予递增剂量的TNF-α。体外暴露于高剂量细胞因子会诱导旺盛的破骨细胞生成,而与体内TNF-α处理无关,也与受体动物是否拥有对TNF-α有反应的基质细胞无关。相反,用低剂量TNF-α处理的骨髓的破骨细胞生成能力需要体内带有TNFR的基质细胞进行启动。重要的是,随着TNF-α剂量的增加,体内细胞因子反应性基质细胞的破骨细胞生成贡献会减少。与此结论一致,患有严重炎性关节炎的小鼠会发生严重的破骨细胞生成和骨侵蚀,而与TNFR的基质细胞表达无关。TNF-α对破骨细胞募集的直接诱导表现为RANK表达增强以及前体细胞对RANKL的敏感性增加。因此,环境中TNF-α相对适度升高时的骨溶解取决于反应性基质细胞。或者,在严重的关节周围炎症状态下,TNF-α可能通过直接促进破骨细胞前体的分化而完全发挥其骨侵蚀作用,而与细胞因子反应性基质细胞和T淋巴细胞无关。