Suppr超能文献

尺寸分散流体中的液-气共存与临界点移动

Liquid-gas coexistence and critical point shifts in size-disperse fluids.

作者信息

Wilding Nigel B, Fasolo Moreno, Sollich Peter

机构信息

Department of Physics, University of Bath, Bath BA27AY, United Kingdom.

出版信息

J Chem Phys. 2004 Oct 8;121(14):6887-99. doi: 10.1063/1.1788632.

Abstract

Specialized Monte Carlo simulations and the moment free energy (MFE) method are employed to study liquid-gas phase equilibria in size-disperse fluids. The investigation is made subject to the constraint of fixed polydispersity, i.e., the form of the "parent" density distribution rho(0)(sigma) of the particle diameters sigma, is prescribed. This is the experimentally realistic scenario for, e.g., colloidal dispersions. The simulations are used to obtain the cloud and shadow curve properties of a Lennard-Jones fluid having diameters distributed according to a Schulz form with a large (delta approximately 40%) degree of polydispersity. Good qualitative accord is found with the results from a MFE method study of a corresponding van der Waals model that incorporates size dispersity both in the hard core reference and the attractive parts of the free energy. The results show that polydispersity engenders considerable broadening of the coexistence region between the cloud curves. The principal effect of fractionation in this region is a common overall scaling of the particle sizes and typical interparticle distances, and we discuss why this effect is rather specific to systems with Schulz diameter distributions. Next, by studying a family of such systems with distributions of various widths, we estimate the dependence of the critical point parameters on delta. In contrast to a previous theoretical prediction, size dispersity is found to raise the critical temperature above its monodisperse value. Unusually for a polydisperse system, the critical point is found to lie at or very close to the extremum of the coexistence region in all cases. We outline an argument showing that such behavior will occur whenever polydispersity affects only the range, rather than the strength of the interparticle interactions.

摘要

采用专门的蒙特卡罗模拟和无矩自由能(MFE)方法来研究尺寸分散流体中的液 - 气平衡。该研究在固定多分散性的约束条件下进行,即规定了粒径σ的“母体”密度分布ρ(0)(σ)的形式。例如,对于胶体分散体系,这是符合实验实际情况的场景。这些模拟用于获得直径按照具有大的多分散度(δ约为40%)的舒尔茨形式分布的 Lennard - Jones 流体的云曲线和阴影曲线特性。发现与对相应范德华模型进行的 MFE 方法研究结果在定性上有很好的一致性,该范德华模型在硬核参考和自由能的吸引部分都纳入了尺寸分散性。结果表明,多分散性导致云曲线之间共存区域显著变宽。该区域内分馏的主要影响是颗粒尺寸和典型颗粒间距离的共同整体缩放,并且我们讨论了为什么这种效应对于具有舒尔茨直径分布的系统相当特殊。接下来,通过研究一系列具有不同宽度分布的此类系统,我们估计了临界点参数对δ的依赖性。与先前的理论预测相反,发现尺寸分散性会使临界温度升高到其单分散值之上。对于多分散系统而言不寻常的是,在所有情况下都发现临界点位于共存区域的极值处或非常接近极值。我们概述了一个论点,表明只要多分散性仅影响颗粒间相互作用的范围而不是强度,就会出现这种行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验