Suppr超能文献

从tRNA角度看密码子使用偏好:冗余、特化以及用于翻译优化的高效解码

Codon usage bias from tRNA's point of view: redundancy, specialization, and efficient decoding for translation optimization.

作者信息

Rocha Eduardo P C

机构信息

Unité Génétique des Génomes Bactériens, Institut Pasteur, 75724 Paris Cedex 15, France.

出版信息

Genome Res. 2004 Nov;14(11):2279-86. doi: 10.1101/gr.2896904. Epub 2004 Oct 12.

Abstract

The selection-mutation-drift theory of codon usage plays a major role in the theory of molecular evolution by explaining the co-evolution of codon usage bias and tRNA content in the framework of translation optimization. Because most studies have focused only on codon usage, we analyzed the tRNA gene pool of 102 bacterial species. We show that as minimal generation times get shorter, the genomes contain more tRNA genes, but fewer anticodon species. Surprisingly, despite the wide G+C variation of bacterial genomes these anticodons are the same in most genomes. This suggests an optimization of the translation machinery to use a small subset of optimal codons and anticodons in fast-growing bacteria and in highly expressed genes. As a result, the overrepresented codons in highly expressed genes tend to be the same in very different genomes to match the same most-frequent anticodons. This is particularly important in fast-growing bacteria, which have higher codon usage bias in these genes. Three models were tested to understand the choice of codons recognized by the same anticodons, all providing significant fit, but under different classes of genes and genomes. Thus, co-evolution of tRNA gene composition and codon usage bias in genomes seen from tRNA's point of view agrees with the selection-mutation-drift theory. However, it suggests a much more universal trend in the evolution of anticodon and codon choice than previously thought. It also provides new evidence that a selective force for the optimization of the translation machinery is the maximization of growth.

摘要

密码子使用的选择-突变-漂变理论在分子进化理论中发挥着重要作用,它在翻译优化的框架内解释了密码子使用偏好与tRNA含量的共同进化。由于大多数研究仅关注密码子使用情况,我们分析了102种细菌的tRNA基因库。我们发现,随着最小世代时间缩短,基因组中tRNA基因数量增多,但反密码子种类减少。令人惊讶的是,尽管细菌基因组的G+C含量差异很大,但大多数基因组中的这些反密码子却是相同的。这表明在快速生长的细菌和高表达基因中,翻译机制进行了优化,以使用一小部分最优密码子和反密码子。结果,高表达基因中过度使用的密码子在非常不同的基因组中往往是相同的,以便与相同的最常见反密码子相匹配。这在快速生长的细菌中尤为重要,因为这些基因具有更高的密码子使用偏好。我们测试了三种模型来理解由相同反密码子识别的密码子选择情况,所有模型都提供了显著的拟合度,但适用于不同类别的基因和基因组。因此,从tRNA的角度来看,基因组中tRNA基因组成与密码子使用偏好的共同进化与选择-突变-漂变理论一致。然而,这表明反密码子和密码子选择的进化趋势比以前认为的更为普遍。它还提供了新的证据,表明翻译机制优化的选择力是生长最大化。

相似文献

2
Coevolution of codon usage and tRNA genes leads to alternative stable states of biased codon usage.
Mol Biol Evol. 2008 Nov;25(11):2279-91. doi: 10.1093/molbev/msn173. Epub 2008 Aug 6.
3
Mutation and selection on the anticodon of tRNA genes in vertebrate mitochondrial genomes.
Gene. 2005 Jan 17;345(1):13-20. doi: 10.1016/j.gene.2004.11.019. Epub 2004 Dec 19.
4
The influence of anticodon-codon interactions and modified bases on codon usage bias in bacteria.
Mol Biol Evol. 2010 Sep;27(9):2129-40. doi: 10.1093/molbev/msq102. Epub 2010 Apr 19.
5
Conflict between translation initiation and elongation in vertebrate mitochondrial genomes.
PLoS One. 2007 Feb 21;2(2):e227. doi: 10.1371/journal.pone.0000227.
7
How mitochondria redefine the code.
J Mol Evol. 2001 Oct-Nov;53(4-5):299-313. doi: 10.1007/s002390010220.
8
Pocketknife tRNA hypothesis: anticodons in mammal mitochondrial tRNA side-arm loops translate proteins?
Biosystems. 2013 Sep;113(3):165-76. doi: 10.1016/j.biosystems.2013.07.004. Epub 2013 Jul 11.
9
Putative mitochondrial polypeptides coded by expanded quadruplet codons, decoded by antisense tRNAs with unusual anticodons.
Biosystems. 2012 Nov;110(2):84-106. doi: 10.1016/j.biosystems.2012.09.002. Epub 2012 Oct 4.

引用本文的文献

2
Unravelling Prokaryotic Codon Usage: Insights from Phylogeny, Influencing Factors and Pathogenicity.
Curr Genomics. 2025;26(2):81-94. doi: 10.2174/0113892029325491240919151045. Epub 2024 Oct 1.
4
CodonTransformer: a multispecies codon optimizer using context-aware neural networks.
Nat Commun. 2025 Apr 3;16(1):3205. doi: 10.1038/s41467-025-58588-7.
5
Lost in translation: conserved amino acid usage despite extreme codon bias in foraminifera.
mBio. 2025 Apr 9;16(4):e0391624. doi: 10.1128/mbio.03916-24. Epub 2025 Mar 5.
6
Variation in the fitness impact of translationally optimal codons among animals.
Genome Res. 2025 Mar 18;35(3):446-458. doi: 10.1101/gr.279837.124.
9
Scaled codon usage similarity index: A comprehensive resource for crop plants.
J Genet Eng Biotechnol. 2024 Dec;22(4):100441. doi: 10.1016/j.jgeb.2024.100441. Epub 2024 Nov 13.
10
Closely Related Brucella Species Widely Differ in their Vegetative and Intracellular Growth.
Curr Microbiol. 2024 Nov 29;82(1):20. doi: 10.1007/s00284-024-03991-4.

本文引用的文献

1
The replication-related organization of bacterial genomes.
Microbiology (Reading). 2004 Jun;150(Pt 6):1609-1627. doi: 10.1099/mic.0.26974-0.
2
Codon usage between genomes is constrained by genome-wide mutational processes.
Proc Natl Acad Sci U S A. 2004 Mar 9;101(10):3480-5. doi: 10.1073/pnas.0307827100. Epub 2004 Feb 27.
3
The evolution of genetic regulatory systems in bacteria.
Nat Rev Genet. 2004 Mar;5(3):169-78. doi: 10.1038/nrg1292.
4
Gene essentiality determines chromosome organisation in bacteria.
Nucleic Acids Res. 2003 Nov 15;31(22):6570-7. doi: 10.1093/nar/gkg859.
5
An analysis of determinants of amino acids substitution rates in bacterial proteins.
Mol Biol Evol. 2004 Jan;21(1):108-16. doi: 10.1093/molbev/msh004. Epub 2003 Oct 31.
6
On the genetic basis of variation and heterogeneity of DNA base composition.
Proc Natl Acad Sci U S A. 1962 Apr 15;48(4):582-92. doi: 10.1073/pnas.48.4.582.
7
Selective charging of tRNA isoacceptors explains patterns of codon usage.
Science. 2003 Jun 13;300(5626):1718-22. doi: 10.1126/science.1083811.
9
Evolution of synonymous codon usage in metazoans.
Curr Opin Genet Dev. 2002 Dec;12(6):640-9. doi: 10.1016/s0959-437x(02)00353-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验