Suppr超能文献

一种基于内容的图像检索的相似性学习方法:应用于数字乳腺摄影

A similarity learning approach to content-based image retrieval: application to digital mammography.

作者信息

El-Naqa Issam, Yang Yongyi, Galatsanos Nikolas P, Nishikawa Robert M, Wernick Miles N

机构信息

Medical School of Washington University, St. Louis, MO 63110, USA.

出版信息

IEEE Trans Med Imaging. 2004 Oct;23(10):1233-44. doi: 10.1109/TMI.2004.834601.

Abstract

In this paper, we describe an approach to content-based retrieval of medical images from a database, and provide a preliminary demonstration of our approach as applied to retrieval of digital mammograms. Content-based image retrieval (CBIR) refers to the retrieval of images from a database using information derived from the images themselves, rather than solely from accompanying text indices. In the medical-imaging context, the ultimate aim of CBIR is to provide radiologists with a diagnostic aid in the form of a display of relevant past cases, along with proven pathology and other suitable information. CBIR may also be useful as a training tool for medical students and residents. The goal of information retrieval is to recall from a database information that is relevant to the user's query. The most challenging aspect of CBIR is the definition of relevance (similarity), which is used to guide the retrieval machine. In this paper, we pursue a new approach, in which similarity is learned from training examples provided by human observers. Specifically, we explore the use of neural networks and support vector machines to predict the user's notion of similarity. Within this framework we propose using a hierarchal learning approach, which consists of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness and efficiency. We also explore how to incorporate online human interaction to achieve relevance feedback in this learning framework. Our experiments are based on a database consisting of 76 mammograms, all of which contain clustered microcalcifications (MCs). Our goal is to retrieve mammogram images containing similar MC clusters to that in a query. The performance of the retrieval system is evaluated using precision-recall curves computed using a cross-validation procedure. Our experimental results demonstrate that: 1) the learning framework can accurately predict the perceptual similarity reported by human observers, thereby serving as a basis for CBIR; 2) the learning-based framework can significantly outperform a simple distance-based similarity metric; 3) the use of the hierarchical two-stage network can improve retrieval performance; and 4) relevance feedback can be effectively incorporated into this learning framework to achieve improvement in retrieval precision based on online interaction with users; and 5) the retrieved images by the network can have predicting value for the disease condition of the query.

摘要

在本文中,我们描述了一种从数据库中基于内容检索医学图像的方法,并初步展示了我们的方法在数字乳腺X线摄影图像检索中的应用。基于内容的图像检索(CBIR)是指利用从图像本身提取的信息,而非仅仅依靠附带的文本索引,从数据库中检索图像。在医学成像领域,CBIR的最终目标是以展示相关过往病例的形式,为放射科医生提供诊断辅助,同时提供已证实的病理情况及其他合适的信息。CBIR作为医学生和住院医生的培训工具也可能会很有用。信息检索的目标是从数据库中召回与用户查询相关的信息。CBIR最具挑战性的方面是相关性(相似性)的定义,它用于指导检索机器。在本文中,我们采用一种新方法,即从人类观察者提供的训练示例中学习相似性。具体而言,我们探索使用神经网络和支持向量机来预测用户的相似性概念。在此框架内,我们提出使用分层学习方法,该方法由一个二元分类器和一个回归模块组成的级联结构,以优化检索的有效性和效率。我们还探讨了如何在这个学习框架中纳入在线人机交互以实现相关性反馈。我们的实验基于一个包含76幅乳腺X线摄影图像的数据库,所有这些图像都包含簇状微钙化(MCs)。我们的目标是检索出包含与查询中相似MC簇的乳腺X线摄影图像。使用通过交叉验证程序计算的精确率-召回率曲线来评估检索系统的性能。我们的实验结果表明:1)该学习框架能够准确预测人类观察者报告的感知相似性,从而为CBIR奠定基础;2)基于学习的框架能够显著优于简单的基于距离的相似性度量;3)使用分层两阶段网络可以提高检索性能;4)相关性反馈能够有效地纳入这个学习框架,以基于与用户的在线交互实现检索精度的提高;5)网络检索出的图像对查询的疾病状况具有预测价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验