Paddock Susan M, Wynn Barbara O, Carter Grace M, Buntin Melinda Beeuwkes
RAND, Santa Monica, CA 90407, USA.
Health Serv Res. 2004 Dec;39(6 Pt 1):1859-79. doi: 10.1111/j.1475-6773.2004.00322.x.
To demonstrate how a Bayesian outlier accommodation model identifies and accommodates statistical outlier hospitals when developing facility payment adjustments for Medicare's prospective payment system for inpatient rehabilitation care.
DATA SOURCES/STUDY SETTING: Administrative data on costs and facility characteristics of inpatient rehabilitation facilities (IRFs) for calendar years 1998 and 1999.
Compare standard linear regression and the Bayesian outlier accommodation model for developing facility payment adjustors for a prospective payment system.
Variables describing facility average cost per case and facility characteristics were derived from several administrative data sources.
Evidence was found of non-normality of regression errors in the data used to develop facility payment adjustments for the inpatient rehabilitation facilities prospective payment system (IRF PPS). The Bayesian outlier accommodation model is shown to be appropriate for these data, but the model is largely consistent with the standard linear regression used in the development of the IRF PPS payment adjustors.
The Bayesian outlier accommodation model is more robust to statistical outlier IRFs than standard linear regression for developing facility payment adjustments. It also allows for easy interpretation of model parameters, making it a viable policy alternative to standard regression in setting payment rates.
展示在为医疗保险的住院康复护理前瞻性支付系统制定机构支付调整时,贝叶斯异常值处理模型如何识别并处理统计异常值医院。
数据来源/研究背景:1998年和1999年住院康复机构(IRF)的成本及机构特征的管理数据。
比较标准线性回归和贝叶斯异常值处理模型,以为前瞻性支付系统制定机构支付调整因子。
描述每个病例的机构平均成本和机构特征的变量源自多个管理数据源。
在用于为住院康复机构前瞻性支付系统(IRF PPS)制定机构支付调整的数据中,发现回归误差存在非正态性。结果表明,贝叶斯异常值处理模型适用于这些数据,但该模型在很大程度上与IRF PPS支付调整因子制定过程中使用的标准线性回归一致。
在制定机构支付调整时,贝叶斯异常值处理模型比标准线性回归对统计异常值IRF更具稳健性。它还便于对模型参数进行解释,使其成为设定支付费率时标准回归的可行政策替代方案。