Földy Csaba, Dyhrfjeld-Johnsen Jonas, Soltesz Ivan
Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1280, USA.
J Physiol. 2005 Jan 1;562(Pt 1):47-54. doi: 10.1113/jphysiol.2004.076448. Epub 2004 Nov 18.
Recent experimental and theoretical investigations have made considerable advances in three major areas relating to the structural basis of quantitative cortical microcircuit theory. The first concerns the nature of the cellular units, encompassing the increasingly precise identification and progressively more complete listing of the individual cellular species that constitute the various cortical networks. The second element addresses the problem of heterogeneity, including the demonstration of the importance of cell to cell variability within defined interneuronal populations and the application of the Shannon-Wiener diversity index for the quantitative assessment of the number and relative abundance of interneuronal species. The third component relates to the discovery of basic topological principles underlying the circuit wiring, revealing a surprising order in the architectural design of networks. These new advances deepen our understanding of the computational principles embedded in cortical microcircuits, and they also provide novel opportunities for building realistic models of mammalian cortical microcircuits.
最近的实验和理论研究在与定量皮质微电路理论的结构基础相关的三个主要领域取得了重大进展。第一个涉及细胞单元的性质,包括对构成各种皮质网络的单个细胞种类的日益精确的识别和越来越完整的列举。第二个要素解决异质性问题,包括证明在定义的中间神经元群体内细胞间变异性的重要性,以及应用香农 - 维纳多样性指数对中间神经元种类的数量和相对丰度进行定量评估。第三个组成部分与电路布线背后的基本拓扑原理的发现有关,揭示了网络架构设计中令人惊讶的秩序。这些新进展加深了我们对皮质微电路中嵌入的计算原理的理解,也为构建哺乳动物皮质微电路的真实模型提供了新机会。