Suppr超能文献

皮质微电路理论的结构

Structure of cortical microcircuit theory.

作者信息

Földy Csaba, Dyhrfjeld-Johnsen Jonas, Soltesz Ivan

机构信息

Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697-1280, USA.

出版信息

J Physiol. 2005 Jan 1;562(Pt 1):47-54. doi: 10.1113/jphysiol.2004.076448. Epub 2004 Nov 18.

Abstract

Recent experimental and theoretical investigations have made considerable advances in three major areas relating to the structural basis of quantitative cortical microcircuit theory. The first concerns the nature of the cellular units, encompassing the increasingly precise identification and progressively more complete listing of the individual cellular species that constitute the various cortical networks. The second element addresses the problem of heterogeneity, including the demonstration of the importance of cell to cell variability within defined interneuronal populations and the application of the Shannon-Wiener diversity index for the quantitative assessment of the number and relative abundance of interneuronal species. The third component relates to the discovery of basic topological principles underlying the circuit wiring, revealing a surprising order in the architectural design of networks. These new advances deepen our understanding of the computational principles embedded in cortical microcircuits, and they also provide novel opportunities for building realistic models of mammalian cortical microcircuits.

摘要

最近的实验和理论研究在与定量皮质微电路理论的结构基础相关的三个主要领域取得了重大进展。第一个涉及细胞单元的性质,包括对构成各种皮质网络的单个细胞种类的日益精确的识别和越来越完整的列举。第二个要素解决异质性问题,包括证明在定义的中间神经元群体内细胞间变异性的重要性,以及应用香农 - 维纳多样性指数对中间神经元种类的数量和相对丰度进行定量评估。第三个组成部分与电路布线背后的基本拓扑原理的发现有关,揭示了网络架构设计中令人惊讶的秩序。这些新进展加深了我们对皮质微电路中嵌入的计算原理的理解,也为构建哺乳动物皮质微电路的真实模型提供了新机会。

相似文献

1
Structure of cortical microcircuit theory.
J Physiol. 2005 Jan 1;562(Pt 1):47-54. doi: 10.1113/jphysiol.2004.076448. Epub 2004 Nov 18.
2
Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons.
Trends Neurosci. 2004 Apr;27(4):186-93. doi: 10.1016/j.tins.2004.02.007.
3
Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates.
J Physiol Paris. 2009 Jan-Mar;103(1-2):73-87. doi: 10.1016/j.jphysparis.2009.05.006. Epub 2009 Jun 11.
4
A statistical analysis of information-processing properties of lamina-specific cortical microcircuit models.
Cereb Cortex. 2007 Jan;17(1):149-62. doi: 10.1093/cercor/bhj132. Epub 2006 Feb 15.
5
Computational principles of microcircuits for visual object processing in the macaque temporal cortex.
Trends Neurosci. 2014 Mar;37(3):178-87. doi: 10.1016/j.tins.2014.01.002. Epub 2014 Jan 31.
6
Exuberance in the development of cortical networks.
Nat Rev Neurosci. 2005 Dec;6(12):955-65. doi: 10.1038/nrn1790.
7
Towards the visualization of spiking neurons in virtual reality.
Stud Health Technol Inform. 2011;163:685-7.
8
Simulation of robustness against lesions of cortical networks.
Eur J Neurosci. 2007 May;25(10):3185-92. doi: 10.1111/j.1460-9568.2007.05574.x.
9
Theoretical neuroanatomy and the connectivity of the cerebral cortex.
Behav Brain Res. 2002 Sep 20;135(1-2):69-74. doi: 10.1016/s0166-4328(02)00157-2.

引用本文的文献

2
Emergence in the central nervous system.
Cogn Neurodyn. 2013 Jun;7(3):173-95. doi: 10.1007/s11571-012-9229-6. Epub 2012 Nov 28.
5
Implications of activity-dependent neurotransmitter-receptor matching.
Philos Trans R Soc Lond B Biol Sci. 2008 Apr 12;363(1495):1393-9. doi: 10.1098/rstb.2007.2257.
6
Variability v.s. synchronicity of neuronal activity in local cortical network models with different wiring topologies.
J Comput Neurosci. 2007 Oct;23(2):237-50. doi: 10.1007/s10827-007-0030-1. Epub 2007 Apr 6.
7
Local cortical circuit model inferred from power-law distributed neuronal avalanches.
J Comput Neurosci. 2007 Jun;22(3):301-12. doi: 10.1007/s10827-006-0014-6. Epub 2007 Jan 17.
8
Structure/function correlates of neuronal and network activity--an overview.
J Physiol. 2005 Jan 1;562(Pt 1):1-2. doi: 10.1113/jphysiol.2004.078386. Epub 2004 Nov 11.

本文引用的文献

1
Epilepsy in small-world networks.
J Neurosci. 2004 Sep 15;24(37):8075-83. doi: 10.1523/JNEUROSCI.1509-04.2004.
3
Plasticity of interneuronal species diversity and parameter variance in neurological diseases.
Trends Neurosci. 2004 Aug;27(8):504-10. doi: 10.1016/j.tins.2004.06.002.
4
Impact of heterogeneous perisomatic IPSC populations on pyramidal cell firing rates.
J Neurophysiol. 2004 Jun;91(6):2849-58. doi: 10.1152/jn.00916.2003.
5
Global and local synchrony of coupled neurons in small-world networks.
Biol Cybern. 2004 Apr;90(4):302-9. doi: 10.1007/s00422-004-0471-9. Epub 2004 Apr 8.
6
Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons.
Trends Neurosci. 2004 Apr;27(4):186-93. doi: 10.1016/j.tins.2004.02.007.
7
Origins of cortical interneuron subtypes.
J Neurosci. 2004 Mar 17;24(11):2612-22. doi: 10.1523/JNEUROSCI.5667-03.2004.
8
Diversity beyond variance: modulation of firing rates and network coherence by GABAergic subpopulations.
Eur J Neurosci. 2004 Jan;19(1):119-30. doi: 10.1046/j.1460-9568.2003.03096.x.
9
Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1368-73. doi: 10.1073/pnas.0305337101. Epub 2004 Jan 23.
10
Persistently active cannabinoid receptors mute a subpopulation of hippocampal interneurons.
Proc Natl Acad Sci U S A. 2004 Feb 3;101(5):1362-7. doi: 10.1073/pnas.0304752101. Epub 2004 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验