Thompson Laurence K, Kelly Timothy L, Dawe Louise N, Grove Hilde, Lemaire Martin T, Howard Judith A K, Spencer Elinor C, Matthews Craig J, Onions Stuart T, Coles Simon J, Horton Peter N, Hursthouse Michael B, Light Mark E
Department of Chemistry, Memorial University, St. John's, Newfoundland, A1B 3X7 Canada.
Inorg Chem. 2004 Nov 29;43(24):7605-16. doi: 10.1021/ic040083a.
Mn(II)9 grid complexes with a [Mn9(mu-O)12] core, obtained by self-assembly of a series of tritopic picolinic dihydrazone ligands with Mn(II) salts, have been oxidized by both chemical and electrochemical methods to produce mixed oxidation state systems. Examples involving [Mn(III)3Mn(II)6] and [Mn(III)4Mn(II)5] combinations have been produced. Structures are reported for Mn9(2poap-2H)66.14H2O (1), Mn9(2poap-2H)610.10H2O (3), and Mn9(Cl2poap-2H)69.14H2O.3CH3CN (10). Structural studies show distinct contraction of the corner grid sites on oxidation, with overall magnetic properties consistent with the resulting changes in electron distribution. Antiferromagnetic exchange in the outer ring of eight metal centers creates a ferrimagnetic subunit, which undergoes antiferromagnetic coupling to the central metal, leading to S=1/2 (3) and S2/2 (10) ground states. Two moderately intense absorptions are observed on oxidation of the Mn(II) grids in the visible and near-infrared (1000 nm, 700 nm), associated with charge transfer transitions (LMCT, IVCT respectively). Compound 1 crystallized in the monoclinic system, space group P2 1/n, with a=21.308(2) A, b=23.611(2) A, c=32.178(3) A, beta=93.820(2) degrees . Compound 3 crystallized in the tetragonal system, space group I, with a=b=18.44410(10) A, c = 24.9935(3) A. Compound 10 crystallized in the triclinic system, space group P, with a=19.1150(10) A, b=19.7221(10) A, c=26.8334(14) A, alpha=74.7190(10) degrees, beta=77.6970(10) degrees, gamma=64.7770(10) degrees. The facile oxidation of the Mn(II)9 grids is highlighted in terms of their potential use as molecular based platforms for switching and data storage.
通过一系列三齿吡啶二腙配体与锰(II)盐自组装得到的具有[Mn9(μ-O)12]核的锰(II)9网格配合物,已通过化学和电化学方法进行氧化,以产生混合氧化态体系。已制备出涉及[Mn(III)3Mn(II)6]和[Mn(III)4Mn(II)5]组合的实例。报道了Mn9(2poap-2H)66·14H2O(1)、Mn9(2poap-2H)610·10H2O(3)和Mn9(Cl2poap-2H)69·14H2O·3CH3CN(10)的结构。结构研究表明,氧化时角网格位点明显收缩,整体磁性能与电子分布的变化一致。八个金属中心外环中的反铁磁交换产生一个亚铁磁亚基,该亚基与中心金属发生反铁磁耦合,导致基态为S = 1/2(3)和S = 2/2(10)。在可见光和近红外区域(1000 nm、700 nm)氧化锰(II)网格时观察到两个中等强度的吸收峰,分别与电荷转移跃迁(分别为配体到金属的电荷转移跃迁、金属到金属的内壳层电荷转移跃迁)相关。化合物1结晶于单斜晶系,空间群P2 1/n,a = 21.308(2) Å,b = 23.611(2) Å,c = 32.178(3) Å,β = 93.820(2)°。化合物3结晶于四方晶系,空间群I,a = b = 18.44410(10) Å,c = 24.9935(3) Å。化合物10结晶于三斜晶系,空间群P,a = 19.1150(10) Å,b = 19.7221(10) Å,c = 26.8334(14) Å,α = 74.7190(10)°,β = 77.6970(10)°,γ = 64.7770(10)°。锰(II)9网格的易氧化特性在其作为基于分子的开关和数据存储平台的潜在应用方面得到了突出体现