Molina M L, Encinar J A, Barrera F N, Fernández-Ballester G, Riquelme G, González-Ros J M
Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, 03202 Alicante, Spain.
Biochemistry. 2004 Nov 30;43(47):14924-31. doi: 10.1021/bi048889+.
KcsA is a prokaryotic potassium channel formed by the assembly of four identical subunits around a central aqueous pore. Although the high-resolution X-ray structure of the transmembrane portion of KcsA is known [Doyle, D. A., Morais, C. J., Pfuetzner, R. A., Kuo, A., Gulbis, J. M., Cohen, S. L., Chait, B. T., and MacKinnon, R. (1998) Science 280, 69-77], the identification of the molecular determinant(s) involved in promoting subunit tetramerization remains to be determined. Here, C-terminal deletion channel mutants, KcsA Delta125-160 and Delta120-160, as well as 1-125 KcsA obtained from chymotrypsin cleavage of full-length 1-160 KcsA, have been used to evaluate the role of the C-terminal segment on the stability and tetrameric assembly of the channel protein. We found that the lack of the cytoplasmic C-terminal domain of KcsA, and most critically the 120-124 sequence stretch, impairs tetrameric assembly of channel subunits in a heterologous E. coli expression system. Molecular modeling of KcsA predicts that, indeed, such sequence stretch provides intersubunit interaction sites by hydrogen bonding to amino acid residues in N- and C-terminal segments of adjacent subunits. However, once the KcsA tetramer is assembled, its remarkable in vitro stability to detergent or to heat-induced dissociation into subunits is not greatly influenced by whether the entire C-terminal domain continues being part of the protein. Finally and most interestingly, it is observed that, even in the absence of the C-terminal domain involved in tetramerization, reconstitution into membrane lipids promotes in vitro KcsA tetramerization very efficiently, an event which is likely mediated by allowing proper hydrophobic interactions involving intramembrane protein domains.
KcsA是一种原核钾通道,由四个相同的亚基围绕一个中央水相孔组装而成。尽管KcsA跨膜部分的高分辨率X射线结构已为人所知[多伊尔,D.A.,莫赖斯,C.J.,普费茨纳,R.A.,郭,A.,古尔比斯,J.M.,科恩,S.L.,蔡特,B.T.,和麦金农,R.(1998年)《科学》280,69 - 77],但参与促进亚基四聚化的分子决定因素仍有待确定。在这里,C端缺失通道突变体KcsA Δ125 - 160和Δ120 - 160,以及通过对全长1 - 160 KcsA进行胰凝乳蛋白酶切割获得的1 - 125 KcsA,已被用于评估C端片段对通道蛋白稳定性和四聚体组装的作用。我们发现,KcsA细胞质C端结构域的缺失,最关键的是120 - 124序列片段的缺失,会损害异源大肠杆菌表达系统中通道亚基的四聚体组装。KcsA的分子模型预测,实际上,这样的序列片段通过与相邻亚基的N端和C端片段中的氨基酸残基形成氢键提供亚基间相互作用位点。然而,一旦KcsA四聚体组装完成,其在体外对去污剂或热诱导解离成亚基的显著稳定性,并不会因整个C端结构域是否继续作为蛋白质的一部分而受到很大影响。最后且最有趣的是,观察到即使在缺乏参与四聚化的C端结构域的情况下,重组到膜脂中也能非常有效地促进体外KcsA四聚化,这一事件可能是通过允许涉及膜内蛋白结构域的适当疏水相互作用介导的。