Suppr超能文献

磷脂酰肌醇[校正]4,5-二磷酸信号是受体特异性Gq/11介导的N型钙通道调节的基础。

Phosphatidylinositol [correction] 4,5-bisphosphate signals underlie receptor-specific Gq/11-mediated modulation of N-type Ca2+ channels.

作者信息

Gamper Nikita, Reznikov Vitaliy, Yamada Yoichi, Yang Jian, Shapiro Mark S

机构信息

Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA.

出版信息

J Neurosci. 2004 Dec 1;24(48):10980-92. doi: 10.1523/JNEUROSCI.3869-04.2004.

Abstract

Modulation of voltage-gated Ca2+ channels via G-protein-coupled receptors is a prime mechanism regulating neurotransmitter release and synaptic plasticity. Despite extensive studies, the molecular mechanism underlying Gq/11-mediated modulation remains unclear. We found cloned and native N-type Ca2+ channels to be regulated by phosphatidylinositol [correction] 4,5-bisphosphate (PIP2). In inside-out oocyte patches, PIP2 greatly attenuated or reversed the observed rundown of expressed channels. In sympathetic neurons, muscarinic M1 ACh receptor suppression of the Ca2+ current (ICa) was temporally correlated with PIP2 hydrolysis, blunted by PIP2 in whole-cell pipettes, attenuated by expression of PIP2-sequestering proteins, and became irreversible when PIP2 synthesis was blocked. We also probed mechanisms of receptor specificity. Although bradykinin also induced PIP2 hydrolysis, it did not inhibit ICa. However, bradykinin receptors became nearly as effective as M1 receptors when PIP2 synthesis, IP3 receptors, or the activity of neuronal Ca2+ sensor-1 were blocked, suggesting that bradykinin receptor-induced intracellular Ca2+ increases stimulate PIP2 synthesis, compensating for PIP2 hydrolysis. We suggest that differential use of PIP2 signals underlies specificity of Gq/11-coupled receptor actions on the channels

摘要

通过G蛋白偶联受体对电压门控Ca2+通道进行调节是调控神经递质释放和突触可塑性的主要机制。尽管已有广泛研究,但Gq/11介导的调节作用背后的分子机制仍不清楚。我们发现克隆的和天然的N型Ca2+通道受磷脂酰肌醇4,5-二磷酸(PIP2)调控。在膜内面向外的卵母细胞片膜中,PIP2极大地减弱或逆转了所观察到的表达通道的电流衰减。在交感神经元中,毒蕈碱型M1 ACh受体对Ca2+电流(ICa)的抑制与PIP2水解在时间上相关,全细胞膜片钳吸管中的PIP2可使其减弱,PIP2螯合蛋白的表达可使其衰减,当PIP2合成被阻断时则变得不可逆。我们还探究了受体特异性的机制。尽管缓激肽也诱导PIP2水解,但它并不抑制ICa。然而,当PIP2合成、IP3受体或神经元Ca2+传感器-1的活性被阻断时,缓激肽受体的作用几乎与M1受体一样有效,这表明缓激肽受体诱导的细胞内Ca2+增加刺激了PIP2合成,补偿了PIP2水解。我们认为,PIP2信号的差异利用是Gq/11偶联受体对通道作用特异性的基础。

相似文献

4
Modulation of Gq-protein-coupled inositol trisphosphate and Ca2+ signaling by the membrane potential.
J Neurosci. 2006 Sep 27;26(39):9983-95. doi: 10.1523/JNEUROSCI.2773-06.2006.
5
Functional control of cold- and menthol-sensitive TRPM8 ion channels by phosphatidylinositol 4,5-bisphosphate.
J Neurosci. 2005 Feb 16;25(7):1674-81. doi: 10.1523/JNEUROSCI.3632-04.2005.
7
PIP Mediated Inhibition of TREK Potassium Currents by Bradykinin in Mouse Sympathetic Neurons.
Int J Mol Sci. 2020 Jan 8;21(2):389. doi: 10.3390/ijms21020389.
8
Angiotensin II regulates neuronal excitability via phosphatidylinositol 4,5-bisphosphate-dependent modulation of Kv7 (M-type) K+ channels.
J Physiol. 2006 Aug 15;575(Pt 1):49-67. doi: 10.1113/jphysiol.2006.114074. Epub 2006 Jun 15.
10
Voltage-dependent regulation of CaV2.2 channels by Gq-coupled receptor is facilitated by membrane-localized β subunit.
J Gen Physiol. 2014 Oct;144(4):297-309. doi: 10.1085/jgp.201411245. Epub 2014 Sep 15.

引用本文的文献

2
Complex regulation of Cav2.2 N-type Ca2+ channels by Ca2+ and G-proteins.
PLoS One. 2025 Feb 7;20(2):e0314839. doi: 10.1371/journal.pone.0314839. eCollection 2025.
3
Structural biology of voltage-gated calcium channels.
Channels (Austin). 2024 Dec;18(1):2290807. doi: 10.1080/19336950.2023.2290807. Epub 2023 Dec 7.
4
ANO1, CaV1.2, and IP3R form a localized unit of EC-coupling in mouse pulmonary arterial smooth muscle.
J Gen Physiol. 2023 Nov 6;155(11). doi: 10.1085/jgp.202213217. Epub 2023 Sep 13.
5
Regulation of Presynaptic Calcium Channels.
Adv Neurobiol. 2023;33:171-202. doi: 10.1007/978-3-031-34229-5_7.
6
RyR2 regulates store-operated Ca2+ entry, phospholipase C activity, and electrical excitability in the insulinoma cell line INS-1.
PLoS One. 2023 May 4;18(5):e0285316. doi: 10.1371/journal.pone.0285316. eCollection 2023.
7
Role of Lysosomal Cholesterol in Regulating PI(4,5)P-Dependent Ion Channel Function.
Adv Exp Med Biol. 2023;1422:193-215. doi: 10.1007/978-3-031-21547-6_7.
8
Acute phosphatidylinositol 4,5 bisphosphate depletion destabilizes sarcolemmal expression of cardiac L-type Ca channel Ca1.2.
Proc Natl Acad Sci U S A. 2023 Apr 4;120(14):e2221242120. doi: 10.1073/pnas.2221242120. Epub 2023 Mar 28.
9
Involvement of Ca in Signaling Mechanisms Mediating Muscarinic Inhibition of M Currents in Sympathetic Neurons.
Cell Mol Neurobiol. 2023 Jul;43(5):2257-2271. doi: 10.1007/s10571-022-01303-7. Epub 2022 Nov 11.
10
Bradykinin-Induced Sensitization of Transient Receptor Potential Channel Melastatin 3 Calcium Responses in Mouse Nociceptive Neurons.
Front Cell Neurosci. 2022 Apr 13;16:843225. doi: 10.3389/fncel.2022.843225. eCollection 2022.

本文引用的文献

2
Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids.
Science. 2004 Apr 9;304(5668):265-70. doi: 10.1126/science.1094113. Epub 2004 Mar 18.
3
Phospholipid metabolism is required for M1 muscarinic inhibition of N-type calcium current in sympathetic neurons.
Eur Biophys J. 2004 May;33(3):255-64. doi: 10.1007/s00249-003-0387-7. Epub 2004 Mar 5.
4
Orchestration of synaptic plasticity through AKAP signaling complexes.
Neuropharmacology. 2004 Mar;46(3):299-310. doi: 10.1016/j.neuropharm.2003.09.016.
5
Functional organization of PLC signaling microdomains in neurons.
Trends Neurosci. 2004 Jan;27(1):41-7. doi: 10.1016/j.tins.2003.10.013.
6
G beta gamma and KACh: old story, new insights.
Sci STKE. 2003 Aug 5;2003(194):PE32. doi: 10.1126/stke.2003.194.pe32.
7
Visualizing phosphoinositide signalling in single neurons gets a green light.
Trends Neurosci. 2003 Aug;26(8):444-52. doi: 10.1016/S0166-2236(03)00178-4.
8
Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels.
Nature. 2003 Jul 24;424(6947):434-8. doi: 10.1038/nature01807.
9
Calmodulin mediates Ca2+-dependent modulation of M-type K+ channels.
J Gen Physiol. 2003 Jul;122(1):17-31. doi: 10.1085/jgp.200208783. Epub 2003 Jun 16.
10
Kinetic analysis of receptor-activated phosphoinositide turnover.
J Cell Biol. 2003 May 26;161(4):779-91. doi: 10.1083/jcb.200301070.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验