Yao M, Westphal N J, Denver R J
Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI 48109-1048, USA.
J Neuroendocrinol. 2004 Nov;16(11):880-93. doi: 10.1111/j.1365-2826.2004.01246.x.
In mammals, corticotrophin-releasing hormone (CRH) and related peptides are known to play essential roles in the regulation of neuroendocrine, autonomic and behavioural responses to physical and emotional stress. In nonmammalian species, CRH-like peptides are hypothesized to play similar neuroendocrine and neurocrine roles. However, there is relatively little detailed information on the distribution of CRH neurones in the central nervous system (CNS) of nonmammalian vertebrates, and there are currently no comparative data on stress-induced changes in CRH neuronal physiology. We used a specific, affinity-purified antibody raised against synthetic Xenopus laevis CRH to map the distribution of CRH in the CNS of juvenile South African clawed frogs. We then analysed stress-induced changes in CRH immunoreactivity (CRH-ir) throughout the CNS. We found that CRH-positive cell bodies and fibres are widely distributed throughout the brain and rostral spinal cord of juvenile X. laevis. Strong CRH-immunoreactivity (ir) was found in cell bodies and fibres in the anterior preoptic area (POA, an area homologous to the mammalian paraventricular nucleus) and the external zone of the median eminence. Specific CRH-ir cell bodies and fibres were also identified in the septum, pallium and striatum in the telencephalon; the amygdala, bed nucleus of the stria terminalis and various hypothalamic and thalamic nuclei in the diencephalon; the tectum, torus semicircularis and tegmental nuclei of the mesencephalon; the cerebellum and locus coeruleus in the rhombencephalon; and the ventral horn of the rostral spinal cord. To determine if exposure to an acute physical stressor alters CRH neuronal physiology, we exposed juvenile frogs to shaking/handling and conducted morphometric analysis. Plasma corticosterone was significantly elevated by 30 min after exposure to the stressor and continued to increase up to 6 h. Morphometric analysis of CRH-ir after 4 h of stress showed a significant increase in CRH-ir in parvocellular neurones of the anterior preoptic area, the medial amygdala and the bed nucleus of the stria terminalis, but not in other brain regions. The stress-induced increase in CRH-ir in the POA was associated with increased Fos-like immunoreactivity (Fos-LI), and confocal microscopy showed that CRH-ir colocalized with Fos-LI in a subset of Fos-LI-positive neurones. Our results support the view that the basic pattern of CNS CRH expression arose early in vertebrate evolution and lend further support to earlier studies suggesting that amphibians may be a transitional species for descending CRH-ergic pathways. Furthermore, CRH neurones in the frog brain exhibit changes in response to a physical stressor that parallel those seen in mammals, and thus are likely to play an active role in mediating neuroendocrine, behavioural and autonomic stress responses.
在哺乳动物中,促肾上腺皮质激素释放激素(CRH)及相关肽类在调节神经内分泌、自主神经以及对生理和情绪应激的行为反应中发挥着重要作用。在非哺乳动物物种中,人们推测CRH样肽类发挥着类似的神经内分泌和神经分泌作用。然而,关于非哺乳动物脊椎动物中枢神经系统(CNS)中CRH神经元的分布,相对而言详细信息较少,目前也没有关于应激诱导的CRH神经元生理学变化的比较数据。我们使用针对合成的非洲爪蟾CRH制备的特异性亲和纯化抗体,来绘制幼年南非爪蟾中枢神经系统中CRH的分布图。然后我们分析了整个中枢神经系统中应激诱导的CRH免疫反应性(CRH-ir)变化。我们发现CRH阳性细胞体和纤维广泛分布于幼年非洲爪蟾的整个大脑和脊髓前部。在前视前区(POA,与哺乳动物室旁核同源的区域)和正中隆起的外侧区的细胞体和纤维中发现了强烈的CRH免疫反应性(ir)。在端脑的隔区、大脑皮层和纹状体中也鉴定出了特定的CRH-ir细胞体和纤维;间脑的杏仁核、终纹床核以及各种下丘脑和丘脑核团;中脑的顶盖、半规管隆起和被盖核;后脑的小脑和蓝斑;以及脊髓前部的腹角。为了确定暴露于急性物理应激源是否会改变CRH神经元生理学,我们让幼年青蛙接受摇晃/处理并进行形态计量分析。暴露于应激源后30分钟,血浆皮质酮显著升高,并持续增加至6小时。应激4小时后对CRH-ir的形态计量分析显示,视前区前部、内侧杏仁核和终纹床核的小细胞神经元中的CRH-ir显著增加,但其他脑区未出现这种情况。视前区应激诱导的CRH-ir增加与Fos样免疫反应性(Fos-LI)增加相关,共聚焦显微镜显示CRH-ir与Fos-LI在一部分Fos-LI阳性神经元中共定位。我们的结果支持这样一种观点,即中枢神经系统CRH表达的基本模式在脊椎动物进化早期就已出现,并进一步支持了早期研究,这些研究表明两栖动物可能是下行CRH能通路的过渡物种。此外,青蛙大脑中的CRH神经元对应激源的反应变化与哺乳动物中观察到的变化相似,因此可能在介导神经内分泌、行为和自主应激反应中发挥积极作用。