Calhoun Vince D, Adali Tulay, Pekar James J
Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA.
Magn Reson Imaging. 2004 Nov;22(9):1181-91. doi: 10.1016/j.mri.2004.09.004.
Independent component analysis (ICA) is an approach for decomposing fMRI data into spatially independent maps and time courses. We have recently proposed a method for ICA of multisubject data; in the current paper, an extension is proposed for allowing ICA group comparisons. This method is applied to data from experiments designed to stimulate visual cortex, motor cortex or both visual and motor cortices. Several intergroup and intragroup metrics are proposed for assessing the utility of the components for comparisons of group ICA data. The proposed method may prove to be useful in answering questions requiring multigroup comparisons when a flexible modeling approach is desired.
独立成分分析(ICA)是一种将功能磁共振成像(fMRI)数据分解为空间独立图谱和时间进程的方法。我们最近提出了一种用于多主体数据ICA的方法;在本文中,提出了一种扩展方法以允许进行ICA组间比较。该方法应用于旨在刺激视觉皮层、运动皮层或视觉和运动皮层两者的实验数据。提出了几个组间和组内指标,用于评估这些成分在组ICA数据比较中的效用。当需要一种灵活的建模方法时,所提出的方法可能被证明在回答需要多组比较的问题时是有用的。