Suppr超能文献

通过隐式多项式对二维曲线和三维曲面进行稳定拟合。

Stable fitting of 2D curves and 3D surfaces by implicit polynomials.

作者信息

Helzer Amir, Barzohar Meir, Malah David

机构信息

Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2004 Oct;26(10):1283-94. doi: 10.1109/TPAMI.2004.91.

Abstract

This work deals with fitting 2D and 3D implicit polynomials (IPs) to 2D curves and 3D surfaces, respectively. The zero-set of the polynomial is determined by the IP coefficients and describes the data. The polynomial fitting algorithms proposed in this paper aim at reducing the sensitivity of the polynomial to coefficient errors. Errors in coefficient values may be the result of numerical calculations, when solving the fitting problem or due to coefficient quantization. It is demonstrated that the effect of reducing this sensitivity also improves the fitting tightness and stability of the proposed two algorithms in fitting noisy data, as compared to existing algorithms like the well-known 3L and gradient-one algorithms. The development of the proposed algorithms is based on an analysis of the sensitivity of the zero-set to small coefficient changes and on minimizing a bound on the maximal error for one algorithm and minimizing the error variance for the second. Simulation results show that the proposed algorithms provide a significant reduction in fitting errors, particularly when fitting noisy data of complex shapes with high order polynomials, as compared to the performance obtained by the abovementioned existing algorithms.

摘要

这项工作分别涉及将二维和三维隐式多项式(IP)拟合到二维曲线和三维曲面。多项式的零集由IP系数确定并描述数据。本文提出的多项式拟合算法旨在降低多项式对系数误差的敏感性。系数值的误差可能是在解决拟合问题时进行数值计算的结果,也可能是由于系数量化导致的。结果表明,与诸如著名的3L和梯度一算法等现有算法相比,降低这种敏感性的效果还提高了所提出的两种算法在拟合噪声数据时的拟合紧密度和稳定性。所提出算法的开发基于对零集对小系数变化的敏感性分析,以及对一种算法的最大误差界限进行最小化,对第二种算法的误差方差进行最小化。仿真结果表明,与上述现有算法所获得的性能相比,所提出的算法在拟合误差方面有显著降低,特别是在使用高阶多项式拟合复杂形状的噪声数据时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验