Suppr超能文献

Local environment and property of water inside the hollow cylinder of a lipid nanotube.

作者信息

Yui Hiroharu, Guo Yanli, Koyama Kana, Sawada Tsuguo, John George, Yang Bo, Masuda Mitsutoshi, Shimizu Toshimi

机构信息

CREST, Japan Science and Technology Agency, Nanoarchitectonics Research Center, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 4, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8562, Japan.

出版信息

Langmuir. 2005 Jan 18;21(2):721-7. doi: 10.1021/la040109a.

Abstract

We investigated the local environment of water confined inside the hollow cylinder of lipid nanotubes (LNTs) by time-resolved fluorescent measurements and attenuated-total-reflectance infrared (ATR-IR) spectroscopy. The LNT was obtained by self-assembly of cardanyl glucosides in water at room temperature and had an open-ended cylindrical nanospace with a diameter of 10-15 nm, a length of 10-100 microm, and hydrophilic inner and outer surfaces. We introduced a fluorescent probe of 8-anilinonaphthalene-1-sulfonate into the confined water and observed an extremely slow dynamic Stokes shift with a correlation time of 1.26 ns, which was 2-3 orders of magnitude longer than that of bulk-phase water. From the peak shift of the fluorescent spectrum, the local solvent polarity (ET(30)) of the confined water was estimated as 50 kcal/mol, which is 20% lower than that in bulk water. ATR-IR measurements showed that the hydrogen-bond network of water inside the LNT was more developed than that in bulk water at room temperature, which is in contrast to the water in other self-assembled confined geometries, such as Aerosol-OT (AOT) reversed micelles.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验