Antcliff Jennifer F, Haider Shozeb, Proks Peter, Sansom Mark S P, Ashcroft Frances M
University Laboratory of Physiology, Parks Road, Oxford, UK.
EMBO J. 2005 Jan 26;24(2):229-39. doi: 10.1038/sj.emboj.7600487. Epub 2005 Jan 13.
ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the 'slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state.
ATP敏感性钾(KATP)通道通过调节钾离子跨质膜的通量,将细胞代谢与电活动联系起来。通道关闭由ATP介导,ATP与形成孔道的亚基(Kir6.2)结合。在这里,我们使用同源建模和配体对接构建Kir6.2四聚体模型,并确定ATP结合位点。该模型与大量功能数据一致,并通过诱变进一步验证。配体结合发生在两个亚基之间的界面处。ATP的磷酸尾巴与一个亚基C末端的R201和K185相互作用,并与另一个亚基N末端的R50相互作用;腺嘌呤环的N6原子与同一亚基中的E179和R301相互作用。结合口袋内衬残基的突变降低了ATP依赖性通道抑制作用。该模型还表明,一个亚基的C末端与相邻亚基的“滑动螺旋”之间的相互作用可能参与ATP依赖性门控。与在门控中的作用一致,滑动螺旋中的突变使内在通道构象偏向开放状态。