Suppr超能文献

利用莱茵衣藻插入诱变技术对真核生物光合作用进行功能基因组学研究。

Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.

作者信息

Dent Rachel M, Haglund Cat M, Chin Brian L, Kobayashi Marilyn C, Niyogi Krishna K

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, California 94720-3102, USA.

出版信息

Plant Physiol. 2005 Feb;137(2):545-56. doi: 10.1104/pp.104.055244. Epub 2005 Jan 14.

Abstract

The unicellular green alga Chlamydomonas reinhardtii is a widely used model organism for studies of oxygenic photosynthesis in eukaryotes. Here we describe the development of a resource for functional genomics of photosynthesis using insertional mutagenesis of the Chlamydomonas nuclear genome. Chlamydomonas cells were transformed with either of two plasmids conferring zeocin resistance, and insertional mutants were selected in the dark on acetate-containing medium to recover light-sensitive and nonphotosynthetic mutants. The population of insertional mutants was subjected to a battery of primary and secondary phenotypic screens to identify photosynthesis-related mutants that were pigment deficient, light sensitive, nonphotosynthetic, or hypersensitive to reactive oxygen species. Approximately 9% of the insertional mutants exhibited 1 or more of these phenotypes. Molecular analysis showed that each mutant line contains an average of 1.4 insertions, and genetic analysis indicated that approximately 50% of the mutations are tagged by the transforming DNA. Flanking DNA was isolated from the mutants, and sequence data for the insertion sites in 50 mutants are presented and discussed.

摘要

单细胞绿藻莱茵衣藻是一种广泛用于研究真核生物中氧光合作用的模式生物。在此,我们描述了利用莱茵衣藻核基因组的插入诱变开发光合作用功能基因组学资源的过程。用两种赋予博来霉素抗性的质粒之一转化莱茵衣藻细胞,并在黑暗中于含乙酸盐的培养基上筛选插入突变体,以获得光敏感和非光合突变体。对插入突变体群体进行了一系列初级和次级表型筛选,以鉴定色素缺乏、光敏感、非光合或对活性氧超敏感的光合作用相关突变体。约9%的插入突变体表现出1种或更多种这些表型。分子分析表明,每个突变株系平均含有1.4个插入,遗传分析表明约50%的突变被转化DNA标记。从突变体中分离出侧翼DNA,并给出并讨论了50个突变体插入位点的序列数据。

相似文献

1
Functional genomics of eukaryotic photosynthesis using insertional mutagenesis of Chlamydomonas reinhardtii.
Plant Physiol. 2005 Feb;137(2):545-56. doi: 10.1104/pp.104.055244. Epub 2005 Jan 14.
3
Insertional mutagenesis as a tool to study genes/functions in Chlamydomonas.
Adv Exp Med Biol. 2007;616:77-89. doi: 10.1007/978-0-387-75532-8_7.
6
Functional genomics of plant photosynthesis in the fast lane using Chlamydomonas reinhardtii.
Trends Plant Sci. 2001 Aug;6(8):364-71. doi: 10.1016/s1360-1385(01)02018-0.
7
Respiratory-deficient mutants of the unicellular green alga Chlamydomonas: a review.
Biochimie. 2014 May;100:207-18. doi: 10.1016/j.biochi.2013.10.006. Epub 2013 Oct 15.
9
Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii.
PLoS Genet. 2021 Sep 7;17(9):e1009725. doi: 10.1371/journal.pgen.1009725. eCollection 2021 Sep.
10
Rubisco activase is required for optimal photosynthesis in the green alga Chlamydomonas reinhardtii in a low-CO(2) atmosphere.
Plant Physiol. 2003 Dec;133(4):1854-61. doi: 10.1104/pp.103.032078. Epub 2003 Nov 6.

引用本文的文献

5
A gap-free genome assembly of Chlamydomonas reinhardtii and detection of translocations induced by CRISPR-mediated mutagenesis.
Plant Commun. 2023 Mar 13;4(2):100493. doi: 10.1016/j.xplc.2022.100493. Epub 2022 Nov 17.
6
Heme oxygenase-independent bilin biosynthesis revealed by a suppressor screening in .
Front Microbiol. 2022 Aug 8;13:956554. doi: 10.3389/fmicb.2022.956554. eCollection 2022.
8
Discovery of photosynthesis genes through whole-genome sequencing of acetate-requiring mutants of Chlamydomonas reinhardtii.
PLoS Genet. 2021 Sep 7;17(9):e1009725. doi: 10.1371/journal.pgen.1009725. eCollection 2021 Sep.
9
Characterization of Mutants That Exhibit Strong Positive Phototaxis.
Plants (Basel). 2021 Jul 20;10(7):1483. doi: 10.3390/plants10071483.

本文引用的文献

3
Establishing gene function by mutagenesis in Arabidopsis thaliana.
Plant J. 2004 Sep;39(5):682-96. doi: 10.1111/j.1365-313X.2004.02149.x.
4
High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics.
Plant J. 2004 Aug;39(3):450-64. doi: 10.1111/j.1365-313X.2004.02145.x.
5
Rapid, large-scale generation of Ds transposant lines and analysis of the Ds insertion sites in rice.
Plant J. 2004 Jul;39(2):252-63. doi: 10.1111/j.1365-313X.2004.02116.x.
6
Chlamydomonas and Arabidopsis. A dynamic duo.
Plant Physiol. 2004 Jun;135(2):607-10. doi: 10.1104/pp.104.041491.
7
Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences.
Plant J. 2004 Jan;37(2):301-14. doi: 10.1046/j.1365-313x.2003.01948.x.
8
Chlamydomonas reinhardtii at the crossroads of genomics.
Eukaryot Cell. 2003 Dec;2(6):1137-50. doi: 10.1128/EC.2.6.1137-1150.2003.
9
Distribution and characterization of over 1000 T-DNA tags in rice genome.
Plant J. 2003 Oct;36(1):105-13. doi: 10.1046/j.1365-313x.2003.01860.x.
10
Maize-targeted mutagenesis: A knockout resource for maize.
Proc Natl Acad Sci U S A. 2003 Sep 30;100(20):11541-6. doi: 10.1073/pnas.1831119100. Epub 2003 Sep 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验