Zhou Xianghong Jasmine, Kao Ming-Chih J, Huang Haiyan, Wong Angela, Nunez-Iglesias Juan, Primig Michael, Aparicio Oscar M, Finch Caleb E, Morgan Todd E, Wong Wing Hung
Nat Biotechnol. 2005 Feb;23(2):238-43. doi: 10.1038/nbt1058. Epub 2005 Jan 16.
The rapid accumulation of microarray data translates into a need for methods to effectively integrate data generated with different platforms. Here we introduce an approach, 2(nd)-order expression analysis, that addresses this challenge by first extracting expression patterns as meta-information from each data set (1(st)-order expression analysis) and then analyzing them across multiple data sets. Using yeast as a model system, we demonstrate two distinct advantages of our approach: we can identify genes of the same function yet without coexpression patterns and we can elucidate the cooperativities between transcription factors for regulatory network reconstruction by overcoming a key obstacle, namely the quantification of activities of transcription factors. Experiments reported in the literature and performed in our lab support a significant number of our predictions.
微阵列数据的快速积累使得需要有方法来有效整合不同平台生成的数据。在此,我们介绍一种方法,即二阶表达分析,该方法通过首先从每个数据集中提取表达模式作为元信息(一阶表达分析),然后跨多个数据集对其进行分析,来应对这一挑战。以酵母作为模型系统,我们证明了该方法的两个显著优势:我们能够识别具有相同功能但无共表达模式的基因,并且通过克服一个关键障碍,即转录因子活性的量化,我们能够阐明转录因子之间的协同作用以进行调控网络重建。文献中报道的以及我们实验室进行的实验支持了我们的大量预测。