Szczerba Dominik, Székely Gábor
Computer Vision Laboratory, ETH, CH-8092 Zürich, Switzerland.
J Theor Biol. 2005 May 7;234(1):87-97. doi: 10.1016/j.jtbi.2004.11.014. Epub 2004 Dec 30.
Angiogenesis, the growth of vascular structures, is a complex biological process which has long puzzled scientists. Better physiological understanding of this phenomenon could result in many useful medical applications such as the development of new methods for cancer therapy. We report on the development of a simple computational model of micro-vascular structure formation in intussusceptive angiogenesis observed in vivo. The tissue is represented by a discrete set of basic structural entities and flow conditions within the resulting domain are obtained by solving the Navier-Stokes equations. The tissue is then remodelled according to the tangential shear stress while approximating advection by means of simple non-diffusive heuristics. The updated tissue geometry then becomes the input for the next remodelling step. The model, consisting of steady-state flow and a simple mechanistic tissue response, successfully predicts bifurcation formation and micro-vessel separation in a porous cellular medium. This opens new modelling possibilities in computational studies of the cellular transport involved in micro-vascular growth.
血管生成,即血管结构的生长,是一个长期以来一直困扰着科学家的复杂生物过程。对这一现象更深入的生理学理解可能会带来许多有用的医学应用,比如开发新的癌症治疗方法。我们报告了一个关于在体内观察到的套叠式血管生成中微血管结构形成的简单计算模型的开发情况。组织由一组离散的基本结构实体表示,通过求解纳维-斯托克斯方程得到所得区域内的流动条件。然后根据切向剪应力对组织进行重塑,同时通过简单的非扩散启发式方法近似平流。更新后的组织几何形状随后成为下一个重塑步骤的输入。该模型由稳态流动和简单的机械组织响应组成,成功地预测了多孔细胞介质中的分支形成和微血管分离。这为微血管生长中细胞运输的计算研究开辟了新的建模可能性。