Wang Xiaogang, Tang Xiaoou
Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1222-8. doi: 10.1109/TPAMI.2004.57.
PCA, LDA, and Bayesian analysis are the three most representative subspace face recognition approaches. In this paper, we show that they can be unified under the same framework. We first model face difference with three components: intrinsic difference, transformation difference, and noise. A unified framework is then constructed by using this face difference model and a detailed subspace analysis on the three components. We explain the inherent relationship among different subspace methods and their unique contributions to the extraction of discriminating information from the face difference. Based on the framework, a unified subspace analysis method is developed using PCA, Bayes, and LDA as three steps. A 3D parameter space is constructed using the three subspace dimensions as axes. Searching through this parameter space, we achieve better recognition performance than standard subspace methods.
主成分分析(PCA)、线性判别分析(LDA)和贝叶斯分析是三种最具代表性的子空间人脸识别方法。在本文中,我们表明它们可以在同一框架下统一起来。我们首先用三个分量对面部差异进行建模:内在差异、变换差异和噪声。然后利用这个面部差异模型和对这三个分量的详细子空间分析构建一个统一框架。我们解释了不同子空间方法之间的内在关系以及它们在从面部差异中提取鉴别信息方面的独特贡献。基于该框架,以PCA、贝叶斯和LDA为三个步骤开发了一种统一的子空间分析方法。以三个子空间维度为轴构建一个三维参数空间。通过在这个参数空间中搜索,我们获得了比标准子空间方法更好的识别性能。