Suppr超能文献

通过监督滤波增强实现改进的指纹识别。

Improved fingerprint identification with supervised filtering enhancement.

作者信息

Bal Abdullah, El-Saba Aed M, Alam Mohammad S

机构信息

Department of Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama 36688-0002, USA.

出版信息

Appl Opt. 2005 Feb 10;44(5):647-54. doi: 10.1364/ao.44.000647.

Abstract

An important step in the fingerprint identification system is the reliable extraction of distinct features from fingerprint images. Identification performance is directly related to the enhancement of fingerprint images during or after the enrollment phase. Among the various enhancement algorithms, artificial-intelligence-based feature-extraction techniques are attractive owing to their adaptive learning properties. We present a new supervised filtering technique that is based on a dynamic neural-network approach to develop a robust fingerprint enhancement algorithm. For pattern matching, a joint transform correlation (JTC) algorithm has been incorporated that offers high processing speed for real-time applications. Because the fringe-adjusted JTC algorithm has been found to yield a significantly better correlation output compared with alternate JTCs, we used this algorithm for the identification process. Test results are presented to verify the effectiveness of the proposed algorithm.

摘要

指纹识别系统中的一个重要步骤是从指纹图像中可靠地提取独特特征。识别性能直接与注册阶段期间或之后的指纹图像增强相关。在各种增强算法中,基于人工智能的特征提取技术因其自适应学习特性而具有吸引力。我们提出了一种基于动态神经网络方法的新型监督滤波技术,以开发一种强大的指纹增强算法。对于模式匹配,已纳入联合变换相关(JTC)算法,该算法为实时应用提供了高处理速度。由于已发现条纹调整JTC算法与其他JTC相比能产生明显更好的相关输出,因此我们将该算法用于识别过程。给出了测试结果以验证所提算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验