Dürrschmidt Peter, Mansfeld Johanna, Ulbrich-Hofmann Renate
Department of Biochemistry/Biotechnology, Martin-Luther University Halle-Wittenberg, Halle/Saale, Germany.
FEBS J. 2005 Mar;272(6):1523-34. doi: 10.1111/j.1742-4658.2005.04593.x.
The extreme thermal stabilization achieved by the introduction of a disulfide bond (G8C/N60C) into the cysteine-free wild-type-like mutant (pWT) of the neutral protease from Bacillus stearothermophilus[Mansfeld J, Vriend G, Dijkstra BW, Veltman OR, Van den Burg B, Venema G, Ulbrich-Hofmann R & Eijsink VG (1997) J Biol Chem272, 11152-11156] was attributed to the fixation of the loop region 56-69. In this study, the role of calcium ions in the guanidine hydrochloride (GdnHCl)-induced unfolding and autoproteolysis kinetics of pWT and G8C/N60C was analyzed by fluorescence spectroscopy, far-UV CD spectroscopy and SDS/PAGE. First-order rate constants (kobs) were evaluated by chevron plots (ln kobs vs. GdnHCl concentration). The kobs of unfolding showed a difference of nearly six orders of magnitude (DeltaDeltaG# = 33.5 kJ.mol(-1) at 25 degrees C) between calcium saturation (at 100 mM CaCl2) and complete removal of calcium ions (in the presence of 100 mM EDTA). Analysis of the protease variant W55F indicated that calcium binding-site III, situated in the critical region 56-69, determines the stability at calcium ion concentrations between 5 and 50 mM. In the chevron plots the disulfide bridge in G8C/N60C shows a similar effect compared with pWT as the addition of calcium ions, suggesting that the introduced disulfide bridge fixes the region (near calcium binding-site III) that is responsible for unfolding and subsequent autoproteolysis. Owing to the presence of the disulfide bridge, the DeltaDeltaG# is 13.2 kJ.mol(-1) at 25 degrees C and 5 mM CaCl2. Non-linear chevron plots reveal an intermediate in unfolding probably caused by local unfolding of the loop 56-69. The occurrence of this intermediate is prevented by calcium concentrations of > 5 mM, or the introduction of the disulfide bridge G8C/N60C.
通过在嗜热脂肪芽孢杆菌中性蛋白酶的无半胱氨酸野生型类似突变体(pWT)中引入二硫键(G8C/N60C)所实现的极端热稳定性,归因于56 - 69环区域的固定。在本研究中,通过荧光光谱、远紫外圆二色光谱和SDS/PAGE分析了钙离子在盐酸胍(GdnHCl)诱导的pWT和G8C/N60C的去折叠及自催化动力学中的作用。通过V形图(ln kobs对GdnHCl浓度作图)评估一级速率常数(kobs)。在25℃下,钙饱和(100 mM CaCl2)和完全去除钙离子(100 mM EDTA存在下)之间,去折叠的kobs显示出近六个数量级的差异(ΔΔG# = 33.5 kJ·mol⁻¹)。蛋白酶变体W55F的分析表明,位于关键区域56 - 69的钙结合位点III决定了5至50 mM钙离子浓度下的稳定性。在V形图中,G8C/N60C中的二硫键与pWT相比,在添加钙离子时显示出类似的效果,表明引入的二硫键固定了负责去折叠及随后自催化的区域(靠近钙结合位点III)。由于二硫键的存在,在25℃和5 mM CaCl2下,ΔΔG#为13.2 kJ·mol⁻¹。非线性V形图揭示了去折叠过程中的一个中间体,可能是由56 - 69环的局部去折叠引起的。钙离子浓度> 5 mM或引入二硫键G8C/N60C可阻止该中间体的出现。