Suppr超能文献

关于在微阵列实验中合并生物样品的效用。

On the utility of pooling biological samples in microarray experiments.

作者信息

Kendziorski C, Irizarry R A, Chen K-S, Haag J D, Gould M N

机构信息

Department of Biostatistics and Medical Informatics and McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53703, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4252-7. doi: 10.1073/pnas.0500607102. Epub 2005 Mar 8.

Abstract

Over 15% of the data sets catalogued in the Gene Expression Omnibus Database involve RNA samples that have been pooled before hybridization. Pooling affects data quality and inference, but the exact effects are not yet known because pooling has not been systematically studied in the context of microarray experiments. Here we report on the results of an experiment designed to evaluate the utility of pooling and the impact on identifying differentially expressed genes. We find that inference for most genes is not adversely affected by pooling, and we recommend that pooling be done when fewer than three arrays are used in each condition. For larger designs, pooling does not significantly improve inferences if few subjects are pooled. The realized benefits in this case do not outweigh the price paid for loss of individual specific information. Pooling is beneficial when many subjects are pooled, provided that independent samples contribute to multiple pools.

摘要

基因表达综合数据库中编目的超过15%的数据集涉及在杂交前已混合的RNA样本。混合会影响数据质量和推断,但由于在微阵列实验的背景下尚未对混合进行系统研究,确切影响尚不清楚。在此,我们报告一项旨在评估混合的效用及其对鉴定差异表达基因的影响的实验结果。我们发现,对于大多数基因而言,混合不会对推断产生不利影响,并且我们建议在每种条件下使用少于三个阵列时进行混合。对于更大的设计,如果混合的样本很少,混合不会显著改善推断。在这种情况下,实际的好处并不超过因丢失个体特定信息而付出的代价。当混合许多样本时,混合是有益的,前提是独立样本对多个混合样本有贡献。

相似文献

1
On the utility of pooling biological samples in microarray experiments.
Proc Natl Acad Sci U S A. 2005 Mar 22;102(12):4252-7. doi: 10.1073/pnas.0500607102. Epub 2005 Mar 8.
2
Statistical implications of pooling RNA samples for microarray experiments.
BMC Bioinformatics. 2003 Jun 24;4:26. doi: 10.1186/1471-2105-4-26.
3
Effect of pooling samples on the efficiency of comparative studies using microarrays.
Bioinformatics. 2005 Dec 15;21(24):4378-83. doi: 10.1093/bioinformatics/bti717. Epub 2005 Oct 18.
4
The efficiency of pooling mRNA in microarray experiments.
Biostatistics. 2003 Jul;4(3):465-77. doi: 10.1093/biostatistics/4.3.465.
5
Effects of pooling mRNA in microarray class comparisons.
Bioinformatics. 2004 Dec 12;20(18):3318-25. doi: 10.1093/bioinformatics/bth391. Epub 2004 Jul 9.
6
poolMC: smart pooling of mRNA samples in microarray experiments.
BMC Bioinformatics. 2010 Jun 2;11:299. doi: 10.1186/1471-2105-11-299.
7
Questioning the utility of pooling samples in microarray experiments with cell lines.
Int J Biol Markers. 2006 Apr-Jun;21(2):67-73. doi: 10.1177/172460080602100201.
8
Representation of individual gene expression in completely pooled mRNA samples.
Biosci Biotechnol Biochem. 2005 Jun;69(6):1098-103. doi: 10.1271/bbb.69.1098.
10
Replication, variation and normalisation in microarray experiments.
Appl Bioinformatics. 2005;4(1):33-44. doi: 10.2165/00822942-200504010-00004.

引用本文的文献

1
How thoughtful experimental design can empower biologists in the omics era.
Nat Commun. 2025 Aug 6;16(1):7263. doi: 10.1038/s41467-025-62616-x.
2
Adaptive immune changes in colorectal cancer: a focus on T and B cell activation genes.
Discov Oncol. 2025 Jun 8;16(1):1032. doi: 10.1007/s12672-025-02794-8.
6
Transcriptome Profile and Gene Expression During Different Ovarian Maturation Stages of (De Man, 1879).
Trop Life Sci Res. 2024 Oct;35(3):77-108. doi: 10.21315/tlsr2024.35.3.4. Epub 2024 Oct 7.
7
Experimental colitis in young Tg2576 mice accelerates the onset of an Alzheimer's-like clinical phenotype.
Alzheimers Res Ther. 2024 May 21;16(1):116. doi: 10.1186/s13195-024-01471-2.
8
Profiling Human Cerebrospinal Fluid (CSF) Endogenous Peptidome in Alzheimer's Disease.
Methods Mol Biol. 2024;2758:445-455. doi: 10.1007/978-1-0716-3646-6_24.
9
Metabolomics analysis reveals novel serum metabolite alterations in cancer cachexia.
Front Oncol. 2024 Feb 20;14:1286896. doi: 10.3389/fonc.2024.1286896. eCollection 2024.

本文引用的文献

1
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
4
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.
Biostatistics. 2003 Apr;4(2):249-64. doi: 10.1093/biostatistics/4.2.249.
5
The efficiency of pooling mRNA in microarray experiments.
Biostatistics. 2003 Jul;4(3):465-77. doi: 10.1093/biostatistics/4.3.465.
6
Statistical significance for genomewide studies.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5. doi: 10.1073/pnas.1530509100. Epub 2003 Jul 25.
7
Statistical implications of pooling RNA samples for microarray experiments.
BMC Bioinformatics. 2003 Jun 24;4:26. doi: 10.1186/1471-2105-4-26.
8
Summaries of Affymetrix GeneChip probe level data.
Nucleic Acids Res. 2003 Feb 15;31(4):e15. doi: 10.1093/nar/gng015.
9
Natural variation in human gene expression assessed in lymphoblastoid cells.
Nat Genet. 2003 Mar;33(3):422-5. doi: 10.1038/ng1094. Epub 2003 Feb 3.
10
Fundamentals of experimental design for cDNA microarrays.
Nat Genet. 2002 Dec;32 Suppl:490-5. doi: 10.1038/ng1031.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验