Brown Aaron C, Olver William I, Donnelly Charles J, May Marjorie E, Naggert Jürgen K, Shaffer Daniel J, Roopenian Derry C
The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA.
BMC Genet. 2005 Mar 10;6:12. doi: 10.1186/1471-2156-6-12.
Recent developments in sequence databases provide the opportunity to relate the expression pattern of genes to their genomic position, thus creating a transcriptome map. Quantitative trait loci (QTL) are phenotypically-defined chromosomal regions that contribute to allelically variant biological traits, and by overlaying QTL on the transcriptome, the search for candidate genes becomes extremely focused.
We used our novel data mining tool, ExQuest, to select genes within known diabesity QTL showing enriched expression in primary diabesity affected tissues. We then quantified transcripts in adipose, pancreas, and liver tissue from Tally Ho mice, a multigenic model for Type II diabetes (T2D), and from diabesity-resistant C57BL/6J controls. Analysis of the resulting quantitative PCR data using the Global Pattern Recognition analytical algorithm identified a number of genes whose expression is altered, and thus are novel candidates for diabesity QTL and/or pathways associated with diabesity.
Transcription-based data mining of genes in QTL-limited intervals followed by efficient quantitative PCR methods is an effective strategy for identifying genes that may contribute to complex pathophysiological processes.
序列数据库的最新进展为将基因的表达模式与其基因组位置相关联提供了机会,从而创建了一个转录组图谱。数量性状基因座(QTL)是表型定义的染色体区域,其对具有等位基因变异的生物学性状有贡献,通过将QTL覆盖在转录组上,寻找候选基因变得极为有针对性。
我们使用我们的新型数据挖掘工具ExQuest,在已知的糖尿病肥胖症QTL内选择在主要受糖尿病肥胖症影响的组织中表达丰富的基因。然后,我们对来自塔利霍小鼠(一种II型糖尿病(T2D)的多基因模型)以及抗糖尿病肥胖症的C57BL / 6J对照的脂肪、胰腺和肝脏组织中的转录本进行了定量分析。使用全局模式识别分析算法对所得的定量PCR数据进行分析,确定了许多表达发生改变的基因,因此这些基因是糖尿病肥胖症QTL和/或与糖尿病肥胖症相关途径的新候选基因。
在QTL限定区间内基于转录的基因数据挖掘,随后采用高效的定量PCR方法,是识别可能导致复杂病理生理过程的基因的有效策略。