Suppr超能文献

视觉搜索中的最佳眼动策略

Optimal eye movement strategies in visual search.

作者信息

Najemnik Jiri, Geisler Wilson S

机构信息

Center for Perceptual Systems and Department of Psychology, University of Texas at Austin, Austin, Texas 78712, USA.

出版信息

Nature. 2005 Mar 17;434(7031):387-91. doi: 10.1038/nature03390.

Abstract

To perform visual search, humans, like many mammals, encode a large field of view with retinas having variable spatial resolution, and then use high-speed eye movements to direct the highest-resolution region, the fovea, towards potential target locations. Good search performance is essential for survival, and hence mammals may have evolved efficient strategies for selecting fixation locations. Here we address two questions: what are the optimal eye movement strategies for a foveated visual system faced with the problem of finding a target in a cluttered environment, and do humans employ optimal eye movement strategies during a search? We derive the ideal bayesian observer for search tasks in which a target is embedded at an unknown location within a random background that has the spectral characteristics of natural scenes. Our ideal searcher uses precise knowledge about the statistics of the scenes in which the target is embedded, and about its own visual system, to make eye movements that gain the most information about target location. We find that humans achieve nearly optimal search performance, even though humans integrate information poorly across fixations. Analysis of the ideal searcher reveals that there is little benefit from perfect integration across fixations--much more important is efficient processing of information on each fixation. Apparently, evolution has exploited this fact to achieve efficient eye movement strategies with minimal neural resources devoted to memory.

摘要

为了执行视觉搜索任务,人类和许多哺乳动物一样,通过具有可变空间分辨率的视网膜对大视野进行编码,然后利用高速眼动将最高分辨率区域(中央凹)对准潜在目标位置。良好的搜索性能对生存至关重要,因此哺乳动物可能已经进化出了选择注视位置的有效策略。在这里,我们探讨两个问题:对于在杂乱环境中寻找目标的中央凹视觉系统,最佳眼动策略是什么,以及人类在搜索过程中是否采用最佳眼动策略?我们推导出了用于搜索任务的理想贝叶斯观察者,在该任务中,目标被嵌入具有自然场景光谱特征的随机背景中的未知位置。我们的理想搜索者利用关于目标所在场景的统计信息以及自身视觉系统的精确知识,做出能获取关于目标位置最多信息的眼动。我们发现,尽管人类在不同注视之间整合信息的能力较差,但仍能实现近乎最佳的搜索性能。对理想搜索者的分析表明,在不同注视之间进行完美整合并没有太大益处——更重要的是对每次注视的信息进行高效处理。显然,进化利用了这一事实,以最少的用于记忆的神经资源实现了高效的眼动策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验