Mahapatra Sebabrata, Scherman Hataichanok, Brennan Patrick J, Crick Dean C
Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
J Bacteriol. 2005 Apr;187(7):2341-7. doi: 10.1128/JB.187.7.2341-2347.2005.
The peptidoglycan of Mycobacterium spp. reportedly has some unique features, including the occurrence of N-glycolylmuramic rather than N-acetylmuramic acid. However, very little is known of the actual biosynthesis of mycobacterial peptidoglycan, including the extent and origin of N glycolylation. In the present work, we have isolated and analyzed muramic acid residues located in peptidoglycan and UDP-linked precursors of peptidoglycan from Mycobacterium tuberculosis and Mycobacterium smegmatis. The muramic acid residues isolated from the mature peptidoglycan of both species were shown to be a mixture of the N-acetyl and N-glycolyl derivatives, not solely the N-glycolylated product as generally reported. The isolated UDP-linked N-acylmuramyl-pentapeptide precursor molecules also contain a mixture of N-acetyl and N-glycolyl muramyl residues in apparent contrast to previous observations in which the precursors isolated after treatment with d-cycloserine consisted entirely of N-glycolyl muropeptides. However, nucleotide-linked peptidoglycan precursors isolated from M. tuberculosis treated with d-cycloserine contained only N-glycolylmuramyl-tripeptide precursors, whereas those from similarly treated M. smegmatis consisted of a mixture of N-glycolylated and N-acetylated residues. The full pentapeptide intermediate, isolated following vancomycin treatment of M. smegmatis, consisted of the N-glycolyl derivative only, whereas the corresponding M. tuberculosis intermediate was a mixture of both the N-glycolyl and N-acetyl products. Thus, treatment with vancomycin and d-cylcoserine not only caused an accumulation of nucleotide-linked intermediate compounds but also altered their glycolylation status, possibly by altering the normal equilibrium maintained by de novo biosynthesis and peptidoglycan recycling.
据报道,分枝杆菌属的肽聚糖具有一些独特特征,包括存在N-糖基化胞壁酸而非N-乙酰胞壁酸。然而,关于分枝杆菌肽聚糖的实际生物合成,包括N-糖基化的程度和来源,人们所知甚少。在本研究中,我们从结核分枝杆菌和耻垢分枝杆菌中分离并分析了位于肽聚糖和肽聚糖的UDP连接前体中的胞壁酸残基。从这两种菌的成熟肽聚糖中分离出的胞壁酸残基显示为N-乙酰和N-糖基化衍生物的混合物,并非如一般报道的那样仅是N-糖基化产物。分离出的UDP连接的N-酰基胞壁酰-五肽前体分子也含有N-乙酰和N-糖基化胞壁酰残基的混合物,这显然与之前的观察结果不同,之前在用d-环丝氨酸处理后分离出的前体完全由N-糖基化的胞壁肽组成。然而,用d-环丝氨酸处理的结核分枝杆菌中分离出的核苷酸连接的肽聚糖前体仅含有N-糖基化胞壁酰-三肽前体,而同样处理的耻垢分枝杆菌中的前体则由N-糖基化和N-乙酰化残基的混合物组成。用万古霉素处理耻垢分枝杆菌后分离出的完整五肽中间体仅由N-糖基化衍生物组成,而相应的结核分枝杆菌中间体是N-糖基化和N-乙酰化产物的混合物。因此,用万古霉素和d-环丝氨酸处理不仅导致核苷酸连接的中间化合物积累,还改变了它们的糖基化状态,这可能是通过改变由从头生物合成和肽聚糖循环维持的正常平衡来实现的。