Suppr超能文献

非均相成核的分子方法。

The molecular approach to heterogeneous nucleation.

作者信息

Zapadinsky Evgeni, Lauri Antti, Kulmala Markku

机构信息

Department of Physical Sciences, University of Helsinki, Finland.

出版信息

J Chem Phys. 2005 Mar 15;122(11):114709. doi: 10.1063/1.1881032.

Abstract

A molecular approach to heterogeneous nucleation has been developed. The expressions for the equilibrium cluster distribution, the reversible work of the cluster formation, and the nucleation rate have been derived. Two separate statements for the work of formation were formulated. If the equilibrium cluster distribution is normalized on the monomer concentration near the substrate surface, the reversible work of formation is expressed by DeltaG(het) (I) = (F(n) (het)-F(n) (hom))-(F(1) (het)-F(1) (hom)) + DeltaG(hom) where F(n) (het) and F(n) (hom) are the Helmholtz free energies of a cluster interacting with a substrate and a cluster not interacting with the substrate, respectively. If the equilibrium cluster distribution is normalized on the monomer concentration far from the substrate surface, the work of cluster formation is given by DeltaG(het) (II) = (F(n) (het)-F(n) (hom)) + DeltaG(hom). The former expression corresponds to the approach of the classical heterogeneous nucleation theory. The cluster partition function appears to be dependent on the location of a virtual plane, which separates the volume, where the interaction of the clusters with the substrate is effective from the one where interaction is negligible. Our Monte Carlo simulations have shown that the dependence is rather weak and thus the location of the plane is not very important. According to the simulations the variation of the plane position in the range from 20 to 50 Angstroms does not lead to a considerable change of the heterogeneous nucleation rate.

摘要

已经开发出一种用于非均相成核的分子方法。推导了平衡团簇分布、团簇形成的可逆功和成核速率的表达式。针对形成功提出了两种不同的表述。如果平衡团簇分布以靠近衬底表面的单体浓度进行归一化,则形成的可逆功由ΔG(het)(I) = (F(n)(het) - F(n)(hom)) - (F(1)(het) - F(1)(hom)) + ΔG(hom)表示,其中F(n)(het)和F(n)(hom)分别是与衬底相互作用的团簇和不与衬底相互作用的团簇的亥姆霍兹自由能。如果平衡团簇分布以远离衬底表面的单体浓度进行归一化,则团簇形成功由ΔG(het)(II) = (F(n)(het) - F(n)(hom)) + ΔG(hom)给出。前一种表达式对应于经典非均相成核理论的方法。团簇配分函数似乎取决于一个虚拟平面的位置,该平面将团簇与衬底相互作用有效的体积与相互作用可忽略的体积分隔开。我们的蒙特卡罗模拟表明,这种依赖性相当弱,因此该平面的位置不是非常重要。根据模拟,平面位置在20到50埃范围内的变化不会导致非均相成核速率发生显著变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验