Suppr超能文献

纹状体在运动反应的抑制和执行之外的功能。

Function of striatum beyond inhibition and execution of motor responses.

作者信息

Vink Matthijs, Kahn René S, Raemaekers Mathijs, van den Heuvel Martijn, Boersma Maria, Ramsey Nick F

机构信息

Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Department of Psychiatry, Heidelberglaan Utrecht, The Netherlands.

出版信息

Hum Brain Mapp. 2005 Jul;25(3):336-44. doi: 10.1002/hbm.20111.

Abstract

We used functional magnetic resonance imaging (fMRI) to study the role of the striatum in inhibitory motor control. Subjects had to refrain from responding to designated items (STOP trials) within a similar series of motor stimuli. Striatal activation was increased significantly compared to that when responding to all targets within a series of motor stimuli, indicating that the striatum is more active when inhibitory motor control over responses is required. The likelihood of a STOP trial was varied parametrically by varying the number of GO trials before a STOP trial. We could thus measure the effect of expecting a STOP trial on the fMRI response in the striatum. We show for the first time in humans that the striatum becomes more active when the likelihood of inhibiting a planned motor response increases. Our findings suggest that the striatum is critically involved in inhibitory motor control, most likely by controlling the execution of planned motor responses.

摘要

我们使用功能磁共振成像(fMRI)来研究纹状体在抑制性运动控制中的作用。受试者必须在一系列类似的运动刺激中抑制对指定项目做出反应(停止试验)。与对一系列运动刺激中的所有目标做出反应时相比,纹状体激活显著增加,这表明当需要对反应进行抑制性运动控制时,纹状体更活跃。通过改变停止试验前的执行试验次数,参数化地改变停止试验的可能性。因此,我们可以测量预期停止试验对纹状体中fMRI反应的影响。我们首次在人类中表明,当抑制计划好的运动反应的可能性增加时,纹状体变得更加活跃。我们的研究结果表明,纹状体在抑制性运动控制中起着关键作用,很可能是通过控制计划好的运动反应的执行来实现的。

相似文献

1
Function of striatum beyond inhibition and execution of motor responses.
Hum Brain Mapp. 2005 Jul;25(3):336-44. doi: 10.1002/hbm.20111.
2
Neural networks of response shifting: influence of task speed and stimulus material.
Brain Res. 2006 May 23;1090(1):146-55. doi: 10.1016/j.brainres.2006.03.039. Epub 2006 Apr 27.
3
4
Striatal activity during intentional switching depends on pattern stability.
J Neurosci. 2010 Mar 3;30(9):3167-74. doi: 10.1523/JNEUROSCI.2673-09.2010.
6
On the role of the striatum in response inhibition.
PLoS One. 2010 Nov 4;5(11):e13848. doi: 10.1371/journal.pone.0013848.
7
Striatal prediction error modulates cortical coupling.
J Neurosci. 2010 Mar 3;30(9):3210-9. doi: 10.1523/JNEUROSCI.4458-09.2010.
8
An fMRI study of the lateralization of motor cortex activation in acallosal patients.
Neuroreport. 2000 Aug 3;11(11):2409-13. doi: 10.1097/00001756-200008030-00014.
9
Intentional inhibition: how the "veto-area" exerts control.
Hum Brain Mapp. 2009 Sep;30(9):2834-43. doi: 10.1002/hbm.20711.
10
The free choice whether or not to respond after stimulus presentation.
Hum Brain Mapp. 2009 Sep;30(9):2971-85. doi: 10.1002/hbm.20722.

引用本文的文献

1
Involvement of Neurons in the Nonhuman Primate Anterior Striatum in Proactive Inhibition.
J Neurosci. 2024 Dec 4;44(49):e0866242024. doi: 10.1523/JNEUROSCI.0866-24.2024.
2
Involvement of neurons in the non-human primate anterior striatum in proactive inhibition.
bioRxiv. 2024 Apr 28:2024.04.24.591009. doi: 10.1101/2024.04.24.591009.
4
Corticostriatal causality analysis in children and adolescents with attention-deficit/hyperactivity disorder.
Psychiatry Clin Neurosci. 2024 May;78(5):291-299. doi: 10.1111/pcn.13650. Epub 2024 Mar 5.
6
An ERP study on proactive and reactive response inhibition in individuals with schizotypy.
Sci Rep. 2021 Apr 16;11(1):8394. doi: 10.1038/s41598-021-87735-5.
7
Prefrontal Responses during Proactive and Reactive Inhibition Are Differentially Impacted by Stress in Anorexia and Bulimia Nervosa.
J Neurosci. 2021 May 19;41(20):4487-4499. doi: 10.1523/JNEUROSCI.2853-20.2021. Epub 2021 Apr 12.
9
The YOUth study: Rationale, design, and study procedures.
Dev Cogn Neurosci. 2020 Dec;46:100868. doi: 10.1016/j.dcn.2020.100868. Epub 2020 Oct 7.
10
Developmental maturation of inhibitory control circuitry in a high-risk sample: A longitudinal fMRI study.
Dev Cogn Neurosci. 2020 Jun;43:100781. doi: 10.1016/j.dcn.2020.100781. Epub 2020 Apr 25.

本文引用的文献

2
A pyramid approach to subpixel registration based on intensity.
IEEE Trans Image Process. 1998;7(1):27-41. doi: 10.1109/83.650848.
3
Temporal organization of covert motor processes during response selection and preparation.
Biol Psychol. 2003 Oct;64(1-2):47-75. doi: 10.1016/s0301-0511(03)00102-9.
6
The roles of the cerebellum and basal ganglia in timing and error prediction.
Eur J Neurosci. 2002 Oct;16(8):1609-19. doi: 10.1046/j.1460-9568.2002.02212.x.
7
Organization of corticostriatal motor inputs in monkey putamen.
J Neurophysiol. 2002 Oct;88(4):1830-42. doi: 10.1152/jn.2002.88.4.1830.
9
A network representation of response probability in the striatum.
Neuron. 2002 Mar 14;33(6):973-82. doi: 10.1016/s0896-6273(02)00627-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验