Wager Tor D, Keller Matthew C, Lacey Steven C, Jonides John
Department of Psychology, Columbia University, New York, NY 10027, USA.
Neuroimage. 2005 May 15;26(1):99-113. doi: 10.1016/j.neuroimage.2005.01.011.
Robust regression techniques are a class of estimators that are relatively insensitive to the presence of one or more outliers in the data. They are especially well suited to data that require large numbers of statistical tests and may contain outliers due to factors not of experimental interest. Both these issues apply particularly to neuroimaging data analysis. We use simulations to compare several robust techniques against ordinary least squares (OLS) regression, and we apply robust regression to second-level (group "random effects") analyses in three fMRI datasets. Our results show that robust iteratively reweighted least squares (IRLS) at the 2nd level is a computationally efficient technique that both increases statistical power and decreases false positive rates in the presence of outliers. The benefits of IRLS are apparent with small samples (n = 10) and increase with larger sample sizes (n = 40) in the typical range of group neuroimaging experiments. When no true effects are present, IRLS controls false positive rates at an appropriate level. We show that IRLS can have substantial benefits in analysis of group data and in estimating hemodynamic response shapes from time series data. We provide software to implement IRLS in group neuroimaging analyses.
稳健回归技术是一类估计方法,对数据中一个或多个异常值的存在相对不敏感。它们特别适用于需要大量统计检验的数据,并且由于与实验无关的因素可能包含异常值。这两个问题在神经成像数据分析中尤为突出。我们使用模拟来比较几种稳健技术与普通最小二乘法(OLS)回归,并将稳健回归应用于三个功能磁共振成像(fMRI)数据集的二级(组“随机效应”)分析。我们的结果表明,二级稳健迭代加权最小二乘法(IRLS)是一种计算效率高的技术,在存在异常值的情况下,既能提高统计功效又能降低假阳性率。在小组神经成像实验的典型样本量范围内,IRLS的优势在小样本(n = 10)时就很明显,并随着样本量增大(n = 40)而增加。当不存在真实效应时,IRLS能将假阳性率控制在适当水平。我们表明,IRLS在组数据的分析以及从时间序列数据估计血流动力学反应形状方面有显著优势。我们提供了在小组神经成像分析中实现IRLS的软件。