Suppr超能文献

利用神经网络对环境参数对传感器特性的非线性影响进行自动补偿。

Auto-compensation of nonlinear influence of environmental parameters on the sensor characteristics using neural networks.

作者信息

Patra Jagdish Chandra, Ang Ee Luang, Das Amitabha, Chaudhari Narendra Shivaji

机构信息

School of Computer Engineering, Nanyang Technological University, Singapore 639798.

出版信息

ISA Trans. 2005 Apr;44(2):165-76. doi: 10.1016/s0019-0578(07)60175-x.

Abstract

Usually the environmental parameters influence the sensor characteristics in a nonlinear manner. Therefore obtaining correct readout from a sensor under varying environmental conditions is a complex problem. In this paper we propose a neural network (NN)-based interface framework to automatically compensate for the nonlinear influence of the environmental temperature and the nonlinear-response characteristics of a capacitive pressure sensor (CPS) to provide correct readout. With extensive simulation studies we have shown that the NN-based inverse model of the CPS can estimate the applied pressure with a maximum error of +/- 1.0% for a wide temperature variation from 0 to 250 degrees C. A microcontroller unit-based implementation scheme is also proposed.

摘要

通常,环境参数会以非线性方式影响传感器特性。因此,在变化的环境条件下从传感器获得正确的读数是一个复杂的问题。在本文中,我们提出了一种基于神经网络(NN)的接口框架,以自动补偿环境温度的非线性影响以及电容式压力传感器(CPS)的非线性响应特性,从而提供正确的读数。通过广泛的仿真研究,我们表明,对于从0到250摄氏度的宽温度变化,基于NN的CPS逆模型能够以最大±1.0%的误差估计施加的压力。还提出了一种基于微控制器单元的实现方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验