Patra Jagdish Chandra, Ang Ee Luang, Das Amitabha, Chaudhari Narendra Shivaji
School of Computer Engineering, Nanyang Technological University, Singapore 639798.
ISA Trans. 2005 Apr;44(2):165-76. doi: 10.1016/s0019-0578(07)60175-x.
Usually the environmental parameters influence the sensor characteristics in a nonlinear manner. Therefore obtaining correct readout from a sensor under varying environmental conditions is a complex problem. In this paper we propose a neural network (NN)-based interface framework to automatically compensate for the nonlinear influence of the environmental temperature and the nonlinear-response characteristics of a capacitive pressure sensor (CPS) to provide correct readout. With extensive simulation studies we have shown that the NN-based inverse model of the CPS can estimate the applied pressure with a maximum error of +/- 1.0% for a wide temperature variation from 0 to 250 degrees C. A microcontroller unit-based implementation scheme is also proposed.
通常,环境参数会以非线性方式影响传感器特性。因此,在变化的环境条件下从传感器获得正确的读数是一个复杂的问题。在本文中,我们提出了一种基于神经网络(NN)的接口框架,以自动补偿环境温度的非线性影响以及电容式压力传感器(CPS)的非线性响应特性,从而提供正确的读数。通过广泛的仿真研究,我们表明,对于从0到250摄氏度的宽温度变化,基于NN的CPS逆模型能够以最大±1.0%的误差估计施加的压力。还提出了一种基于微控制器单元的实现方案。