Suppr超能文献

Characterization of humic substances by environmental scanning electron microscopy.

作者信息

Redwood Paul S, Lead Jamie R, Harrison Roy M, Jones Ian P, Stoll Serge

机构信息

School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom.

出版信息

Environ Sci Technol. 2005 Apr 1;39(7):1962-6. doi: 10.1021/es0489543.

Abstract

Environmental scanning electron microscopy (ESEM) is a new technique capable of imaging micron and submicron particles. Here, we have applied it to image and quantify natural aquatic organic matter (standard Suwannee River humic acid, SRHA). Uniquely, we have observed the humic aggregate structures as a function of humidity and pH. Large aggregates of tens of micrometers were observed as the dominant material under all conditions, although much smaller material was also observed. Fractal dimensions (D) were calculated between 1.48 and 1.70, although these values were not statistically different under conditions of low humidity. However, D values calculated at high humidities (85%) during the rehydration phase were significantly lower (1.48+/-0.01) than in the initial dehydration phase (1.69+/-0.01). This hysteresis indicated that full rehydration of the HS was either kinetically slow or irreversible after dehydration. Fractal analysis of ESEM images was also performed to probe the change in aggregate structure as a function of pH. Minimum values were calculated at neutral pHs, rising by 0.1-0.2 at both high and low pHs because of a combination of the physical chemistry of HS and the impacts of the drying regime within the ESEM. Thus, ESEM was an important complementary technique to other analytical methods. At present, ESEM cannot be used to image nonperturbed natural samples. However, the method is an ideal method for probing the changes in colloid structure as function of hydration state and has the potential to perform fully quantitative and nonperturbing analysis of colloidal structure.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验