Suppr超能文献

在自定步速和反应时力产生过程中手指力的预期协变。

Anticipatory covariation of finger forces during self-paced and reaction time force production.

作者信息

Olafsdottir Halla, Yoshida Naoki, Zatsiorsky Vladimir M, Latash Mark L

机构信息

Department of Kinesiology, Rec.Hall-267, The Pennsylvania State University, University Park, PA 16802, USA.

出版信息

Neurosci Lett. 2005;381(1-2):92-6. doi: 10.1016/j.neulet.2005.02.003. Epub 2005 Feb 25.

Abstract

We tested a hypothesis that humans can change patterns of finger force covariation in a task-specific manner in preparation to a change in the total force. Subjects performed quick targeted force pulses by pressing with four fingers on force sensors from a certain background force level to a target level. In self-paced trials, finger force modes (hypothetical commands to fingers) showed changes in covariation, computed across trials, more than 100 ms before changes in the total force. Half of the subjects showed large early changes in force mode covariation, while in the other half these changes were much smaller and were followed by a larger positive covariation of finger modes potentially destabilizing the total force profile. Such early covariation changes were absent under the simple reaction time instruction. We conclude that anticipatory covariation reflects control processes that can be expressed differently in different persons and modified depending on the available time for action preparation.

摘要

我们检验了一个假设,即人类能够以特定任务的方式改变手指力量协变模式,为总力量的变化做准备。受试者通过用四根手指从一定的背景力量水平按压力传感器至目标水平,执行快速的目标力量脉冲。在自定节奏的试验中,手指力量模式(对手指的假设指令)在总力量变化前100多毫秒就显示出协变的变化,这些变化是通过跨试验计算得出的。一半的受试者在力量模式协变方面表现出较大的早期变化,而另一半受试者的这些变化则小得多,随后手指模式出现较大的正向协变,这可能会破坏总力量分布的稳定性。在简单反应时指令下,这种早期协变变化并不存在。我们得出结论,预期协变反映了控制过程,这些过程在不同人身上可能有不同表现,并会根据行动准备的可用时间而改变。

相似文献

1
Anticipatory covariation of finger forces during self-paced and reaction time force production.
Neurosci Lett. 2005;381(1-2):92-6. doi: 10.1016/j.neulet.2005.02.003. Epub 2005 Feb 25.
2
Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations.
Exp Brain Res. 2006 Nov;175(4):641-53. doi: 10.1007/s00221-006-0583-7. Epub 2006 Jun 28.
3
Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations.
Exp Brain Res. 2006 Oct;174(4):604-12. doi: 10.1007/s00221-006-0505-8. Epub 2006 May 25.
4
Perception of individual finger forces during multi-finger force production tasks.
Neurosci Lett. 2006 Dec 6;409(3):239-43. doi: 10.1016/j.neulet.2006.09.057. Epub 2006 Oct 17.
5
Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments.
J Neurophysiol. 2011 May;105(5):2275-88. doi: 10.1152/jn.00665.2010. Epub 2011 Mar 9.
6
Age-related changes in multifinger synergies in accurate moment of force production tasks.
J Appl Physiol (1985). 2007 Apr;102(4):1490-501. doi: 10.1152/japplphysiol.00966.2006. Epub 2007 Jan 4.
7
Muscle synergies during voluntary body sway: combining across-trials and within-a-trial analyses.
Exp Brain Res. 2006 Oct;174(4):679-93. doi: 10.1007/s00221-006-0513-8. Epub 2006 May 19.
8
Is there a timing synergy during multi-finger production of quick force pulses?
Exp Brain Res. 2004 Nov;159(1):65-71. doi: 10.1007/s00221-004-1933-y. Epub 2004 Jul 28.
9
Is there a timing synergy during multi-finger production of quick force pulses?
Psychopharmacology (Berl). 2004 Dec;177(1-2):217-23. doi: 10.1007/s00213-004-1933-4.
10
Expectation of movement generates contrasting changes in multifinger synergies in young and older adults.
Exp Brain Res. 2018 Oct;236(10):2765-2780. doi: 10.1007/s00221-018-5333-0. Epub 2018 Jul 18.

引用本文的文献

1
Two aspects of feed-forward control of action stability: effects of action speed and unexpected events.
Exp Brain Res. 2024 Sep;242(9):2177-2191. doi: 10.1007/s00221-024-06892-x. Epub 2024 Jul 11.
2
Evolution, biomechanics, and neurobiology converge to explain selective finger motor control.
Physiol Rev. 2024 Jul 1;104(3):983-1020. doi: 10.1152/physrev.00030.2023. Epub 2024 Feb 22.
3
Expectation of volitional arm movement has prolonged effects on the grip force exerted on a pinched object.
Exp Brain Res. 2022 Oct;240(10):2607-2621. doi: 10.1007/s00221-022-06438-z. Epub 2022 Aug 11.
4
Recent Advances in the Neural Control of Movements: Lessons for Functional Recovery.
Phys Ther Res. 2021 Sep 29;25(1):1-11. doi: 10.1298/ptr.R0018. eCollection 2022.
5
Unintentional force drifts across the human fingers: implications for the neural control of finger tasks.
Exp Brain Res. 2022 Mar;240(3):751-761. doi: 10.1007/s00221-021-06287-2. Epub 2022 Jan 13.
6
One more time about motor (and non-motor) synergies.
Exp Brain Res. 2021 Oct;239(10):2951-2967. doi: 10.1007/s00221-021-06188-4. Epub 2021 Aug 12.
7
Stability of Action and Kinesthetic Perception in Parkinson's Disease.
J Hum Kinet. 2021 Jan 29;76:145-159. doi: 10.2478/hukin-2021-0006. eCollection 2021 Jan.
8
Production and Perception of Intentional and Unintentional Actions.
J Hum Kinet. 2021 Jan 29;76:51-66. doi: 10.2478/hukin-2020-0086. eCollection 2021 Jan.
10
Synergic control of action in levodopa-naïve Parkinson's disease patients: I. Multi-finger interaction and coordination.
Exp Brain Res. 2020 Jan;238(1):229-245. doi: 10.1007/s00221-019-05709-6. Epub 2019 Dec 14.

本文引用的文献

1
The emergence and disappearance of multi-digit synergies during force-production tasks.
Exp Brain Res. 2005 Jul;164(2):260-70. doi: 10.1007/s00221-005-2248-3. Epub 2005 Mar 16.
2
A mode hypothesis for finger interaction during multi-finger force-production tasks.
Biol Cybern. 2003 Feb;88(2):91-8. doi: 10.1007/s00422-002-0336-z.
3
Motor control strategies revealed in the structure of motor variability.
Exerc Sport Sci Rev. 2002 Jan;30(1):26-31. doi: 10.1097/00003677-200201000-00006.
4
Structure of motor variability in marginally redundant multifinger force production tasks.
Exp Brain Res. 2001 Nov;141(2):153-65. doi: 10.1007/s002210100861.
5
The uncontrolled manifold concept: identifying control variables for a functional task.
Exp Brain Res. 1999 Jun;126(3):289-306. doi: 10.1007/s002210050738.
7
Anticipatory postural adjustments during self-paced and reaction-time movements.
Exp Brain Res. 1998 Jul;121(1):7-19. doi: 10.1007/s002210050431.
8
Force sharing among fingers as a model of the redundancy problem.
Exp Brain Res. 1998 Apr;119(3):276-86. doi: 10.1007/s002210050343.
10
Movement, posture and equilibrium: interaction and coordination.
Prog Neurobiol. 1992;38(1):35-56. doi: 10.1016/0301-0082(92)90034-c.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验