Kamasak M E, Bouman C A, Morris E D, Sauer K
School of Electrical and Computer Engineering, Purdue University, 1285 EE Building, PO 268, West Lafayette, IN 47907, USA.
IEEE Trans Med Imaging. 2005 May;24(5):636-50. doi: 10.1109/TMI.2005.845317.
Our goal in this paper is the estimation of kinetic model parameters for each voxel corresponding to a dense three-dimensional (3-D) positron emission tomography (PET) image. Typically, the activity images are first reconstructed from PET sinogram frames at each measurement time, and then the kinetic parameters are estimated by fitting a model to the reconstructed time-activity response of each voxel. However, this "indirect" approach to kinetic parameter estimation tends to reduce signal-to-noise ratio (SNR) because of the requirement that the sinogram data be divided into individual time frames. In 1985, Carson and Lange proposed, but did not implement, a method based on the expectation-maximization (EM) algorithm for direct parametric reconstruction. The approach is "direct" because it estimates the optimal kinetic parameters directly from the sinogram data, without an intermediate reconstruction step. However, direct voxel-wise parametric reconstruction remained a challenge due to the unsolved complexities of inversion and spatial regularization. In this paper, we demonstrate and evaluate a new and efficient method for direct voxel-wise reconstruction of kinetic parameter images using all frames of the PET data. The direct parametric image reconstruction is formulated in a Bayesian framework, and uses the parametric iterative coordinate descent (PICD) algorithm to solve the resulting optimization problem. The PICD algorithm is computationally efficient and is implemented with spatial regularization in the domain of the physiologically relevant parameters. Our experimental simulations of a rat head imaged in a working small animal scanner indicate that direct parametric reconstruction can substantially reduce root-mean-squared error (RMSE) in the estimation of kinetic parameters, as compared to indirect methods, without appreciably increasing computation.
本文的目标是针对与密集三维(3-D)正电子发射断层扫描(PET)图像对应的每个体素估计动力学模型参数。通常,首先在每个测量时间从PET正弦图帧重建活性图像,然后通过将模型拟合到每个体素的重建时间-活性响应来估计动力学参数。然而,这种动力学参数估计的“间接”方法往往会降低信噪比(SNR),因为需要将正弦图数据划分为各个时间帧。1985年,卡森和兰格提出了一种基于期望最大化(EM)算法的直接参数重建方法,但未实施。该方法是“直接”的,因为它直接从正弦图数据估计最优动力学参数,无需中间重建步骤。然而,由于反演和空间正则化的复杂问题尚未解决,直接的逐体素参数重建仍然是一个挑战。在本文中,我们展示并评估了一种使用PET数据的所有帧直接逐体素重建动力学参数图像的新的高效方法。直接参数图像重建是在贝叶斯框架中制定的,并使用参数迭代坐标下降(PICD)算法来解决由此产生的优化问题。PICD算法计算效率高,并在生理相关参数域中通过空间正则化来实现。我们在工作中的小动物扫描仪中对大鼠头部成像的实验模拟表明,与间接方法相比,直接参数重建在动力学参数估计中可以显著降低均方根误差(RMSE),而不会明显增加计算量。