Suppr超能文献

用于多维共聚焦显微镜图像重建的自适应惩罚似然法。

Adaptive penalty likelihood for reconstruction of multidimensional confocal microscopy images.

作者信息

Zhu Daan, Razaz Moe, Lee Richard

机构信息

Royal Society Wolfson Bioinformatics Research Lab, School of Computing Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

出版信息

Comput Med Imaging Graph. 2005 Jul;29(5):319-31. doi: 10.1016/j.compmedimag.2004.12.004.

Abstract

In this paper we devise a penalty likelihood with noise constraints method to restore 2D and 3D confocal microscope images. Regularization is a commonly used technique in image restoration to balance restored image quality and noise suppression, but despite this noise is usually amplified. Taking into account common confocal imaging system degradation, we develop an algorithm by using a gradient descent method (PLGDA) to approach the minimum solution of the penalty likelihood equation. A Lagrange parameter controls the balance between the penalty and likelihood terms and is estimated using an adaptive method. We show that the a priori information is key to the regularization and Lagrange parameter estimation. The convergence characteristics are analysed and discussed. PLGDA and a traditional maximum likelihood expectation maximization are used to restore 2D and 3D confocal images. The point spread function (PSF), used to restore the data is collected from an experiment and modelled by bi-cubic splines to give an accurate noise free representation. Our experimental results show that the restored images are significantly improved by PLGDA.

摘要

在本文中,我们设计了一种带噪声约束的惩罚似然方法来恢复二维和三维共聚焦显微镜图像。正则化是图像恢复中常用的技术,用于平衡恢复图像质量和噪声抑制,但尽管如此,噪声通常会被放大。考虑到共聚焦成像系统常见的退化情况,我们开发了一种算法,通过使用梯度下降法(PLGDA)来逼近惩罚似然方程的最小解。一个拉格朗日参数控制惩罚项和似然项之间的平衡,并使用自适应方法进行估计。我们表明先验信息是正则化和拉格朗日参数估计的关键。对收敛特性进行了分析和讨论。使用PLGDA和传统的最大似然期望最大化方法来恢复二维和三维共聚焦图像。用于恢复数据的点扩散函数(PSF)是从实验中收集的,并通过双三次样条进行建模,以给出准确的无噪声表示。我们的实验结果表明,PLGDA显著改善了恢复的图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验