du Bois d'Aische Aloys, Craene Mathieu De, Geets Xavier, Gregoire Vincent, Macq Benoit, Warfield Simon K
Communications and Remote Sensing Laboratory, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
Med Image Anal. 2005 Dec;9(6):538-46. doi: 10.1016/j.media.2005.04.003.
We describe a new algorithm for non-rigid registration capable of estimating a constrained dense displacement field from multi-modal image data. We applied this algorithm to capture non-rigid deformation between digital images of histological slides and digital flat-bed scanned images of cryotomed sections of the larynx, and carried out validation experiments to measure the effectiveness of the algorithm. The implementation was carried out by extending the open-source Insight ToolKit software. In diagnostic imaging of cancer of the larynx, imaging modalities sensitive to both anatomy (such as MRI and CT) and function (PET) are valuable. However, these modalities differ in their capability to discriminate the margins of tumor. Gold standard tumor margins can be obtained from histological images from cryotomed sections of the larynx. Unfortunately, the process of freezing, fixation, cryotoming and staining the tissue to create histological images introduces non-rigid deformations and significant contrast changes. We demonstrate that the non-rigid registration algorithm we present is able to capture these deformations and the algorithm allows us to align histological images with scanned images of the larynx. Our non-rigid registration algorithm constructs a deformation field to warp one image onto another. The algorithm measures image similarity using a mutual information similarity criterion, and avoids spurious deformations due to noise by constraining the estimated deformation field with a linear elastic regularization term. The finite element method is used to represent the deformation field, and our implementation enables us to assign inhomogeneous material characteristics so that hard regions resist internal deformation whereas soft regions are more pliant. A gradient descent optimization strategy is used and this has enabled rapid and accurate convergence to the desired estimate of the deformation field. A further acceleration in speed without cost of accuracy is achieved by using an adaptive mesh refinement strategy.
我们描述了一种用于非刚性配准的新算法,该算法能够从多模态图像数据中估计出一个受约束的密集位移场。我们将此算法应用于捕捉组织学切片的数字图像与喉部冷冻切片的数字平板扫描图像之间的非刚性变形,并进行了验证实验以测量该算法的有效性。该实现是通过扩展开源的Insight ToolKit软件来完成的。在喉癌的诊断成像中,对解剖结构(如MRI和CT)和功能(PET)都敏感的成像模态很有价值。然而,这些模态在区分肿瘤边缘的能力上有所不同。金标准的肿瘤边缘可以从喉部冷冻切片的组织学图像中获得。不幸的是,冷冻、固定、冷冻切片和对组织进行染色以创建组织学图像的过程会引入非刚性变形和显著的对比度变化。我们证明,我们提出的非刚性配准算法能够捕捉这些变形,并且该算法使我们能够将组织学图像与喉部的扫描图像对齐。我们的非刚性配准算法构建一个变形场,将一幅图像扭曲到另一幅图像上。该算法使用互信息相似性准则来测量图像相似性,并通过用线性弹性正则化项约束估计的变形场来避免由于噪声引起的虚假变形。有限元方法用于表示变形场,我们的实现使我们能够分配非均匀的材料特性,以便硬区域抵抗内部变形,而软区域更具柔韧性。使用了梯度下降优化策略,这使得能够快速准确地收敛到变形场的期望估计值。通过使用自适应网格细化策略,在不损失精度的情况下进一步提高了速度。