Falcke H, Apel W D, Badea A F, Bähren L, Bekk K, Bercuci A, Bertaina M, Biermann P L, Blümer J, Bozdog H, Brancus I M, Buitink S, Brüggemann M, Buchholz P, Butcher H, Chiavassa A, Daumiller K, de Bruyn A G, de Vos C M, Di Pierro F, Doll P, Engel R, Gemmeke H, Ghia P L, Glasstetter R, Grupen C, Haungs A, Heck D, Hörandel J R, Horneffer A, Huege T, Kampert K-H, Kant G W, Klein U, Kolotaev Y, Koopman Y, Krömer O, Kuijpers J, Lafebre S, Maier G, Mathes H J, Mayer H J, Milke J, Mitrica B, Morello C, Navarra G, Nehls S, Nigl A, Obenland R, Oehlschläger J, Ostapchenko S, Over S, Pepping H J, Petcu M, Petrovic J, Plewnia S, Rebel H, Risse A, Roth M, Schieler H, Schoonderbeek G, Sima O, Stümpert M, Toma G, Trinchero G C, Ulrich H, Valchierotti S, van Buren J, van Cappellen W, Walkowiak W, Weindl A, Wijnholds S, Wochele J, Zabierowski J, Zensus J A, Zimmermann D
Max-Planck-Institut für Radioastronomie, 53121 Bonn, Germany.
Nature. 2005 May 19;435(7040):313-6. doi: 10.1038/nature03614.
The nature of ultrahigh-energy cosmic rays (UHECRs) at energies >10(20) eV remains a mystery. They are likely to be of extragalactic origin, but should be absorbed within approximately 50 Mpc through interactions with the cosmic microwave background. As there are no sufficiently powerful accelerators within this distance from the Galaxy, explanations for UHECRs range from unusual astrophysical sources to exotic string physics. Also unclear is whether UHECRs consist of protons, heavy nuclei, neutrinos or gamma-rays. To resolve these questions, larger detectors with higher duty cycles and which combine multiple detection techniques are needed. Radio emission from UHECRs, on the other hand, is unaffected by attenuation, has a high duty cycle, gives calorimetric measurements and provides high directional accuracy. Here we report the detection of radio flashes from cosmic-ray air showers using low-cost digital radio receivers. We show that the radiation can be understood in terms of the geosynchrotron effect. Our results show that it should be possible to determine the nature and composition of UHECRs with combined radio and particle detectors, and to detect the ultrahigh-energy neutrinos expected from flavour mixing.
能量大于(10^{20})电子伏特的超高能宇宙射线(UHECRs)的本质仍然是个谜。它们很可能起源于河外,但通过与宇宙微波背景的相互作用,应该会在大约50百万秒差距内被吸收。由于在距离银河系这个范围内没有足够强大的加速器,对超高能宇宙射线的解释从异常的天体物理源到奇特的弦物理都有。超高能宇宙射线是由质子、重核、中微子还是伽马射线组成也不清楚。为了解决这些问题,需要更大的探测器,其占空比更高且结合多种探测技术。另一方面,超高能宇宙射线的射电辐射不受衰减影响,占空比高,能进行量热测量并提供高精度的方向信息。在此,我们报告使用低成本数字无线电接收机探测到宇宙射线空气簇射产生的射电闪光。我们表明这种辐射可以用地同步加速器效应来解释。我们的结果表明,利用射电探测器和粒子探测器相结合应该能够确定超高能宇宙射线的本质和组成,并探测到由味混合产生的超高能中微子。