Marconi V I, Jagla E A
The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italy.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Mar;71(3 Pt 2A):036110. doi: 10.1103/PhysRevE.71.036110. Epub 2005 Mar 11.
We present a continuum model for the propagation of cracks and fractures in brittle materials. The components of the strain tensor epsilon are the fundamental variables. The evolution equations are based on a free energy that reduces to that of linear elasticity for small epsilon, and accounts for cracks through energy saturation at large values of epsilon. We regularize the model by including terms dependent on gradients of epsilon in the free energy. No additional fields are introduced, and then the whole dynamics is perfectly defined. We show that the model is able to reproduce basic facts in fracture physics, like the Griffith's dependence of the critical stress as a minus one-half power of the crack length. In addition, regularization makes the results insensitive to the numerical mesh used, something not at all trivial in crack modeling. We present an example of the application of the model to predict the growth and curving of cracks in a nontrivial geometrical configuration.
我们提出了一个用于描述脆性材料中裂纹和裂缝扩展的连续介质模型。应变张量ε的分量是基本变量。演化方程基于一个自由能,对于小的ε,该自由能简化为线性弹性的自由能,并通过大ε值时的能量饱和来考虑裂纹。我们通过在自由能中包含依赖于ε梯度的项来对模型进行正则化。不引入额外的场,这样整个动力学就被完美地定义了。我们表明该模型能够重现断裂物理学中的基本事实,比如 Griffith 临界应力与裂纹长度的负二分之一次方的依赖关系。此外,正则化使得结果对所使用的数值网格不敏感,这在裂纹建模中绝非易事。我们给出了该模型应用于预测非平凡几何构型中裂纹扩展和弯曲的一个例子。