Whitney Robert S, Jacquod Ph
Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland.
Phys Rev Lett. 2005 Mar 25;94(11):116801. doi: 10.1103/PhysRevLett.94.116801. Epub 2005 Mar 22.
We present a semiclassical theory for the scattering matrix S of a chaotic ballistic cavity at finite Ehrenfest time. Using a phase-space representation coupled with a multibounce expansion, we show how the Liouville conservation of phase-space volume decomposes S as S=S(cl) plus sign in circle S(qm). The short-time, classical contribution S(cl) generates deterministic transmission eigenvalues T=0 or 1, while quantum ergodicity is recovered within the subspace corresponding to the long-time, stochastic contribution S(qm). This provides a microscopic foundation for the two-phase fluid model, in which the cavity acts like a classical and a quantum cavity in parallel, and explains recent numerical data showing the breakdown of universality in quantum chaotic transport in the deep semiclassical limit. We show that the Fano factor of the shot-noise power vanishes in this limit, while weak localization remains universal.
我们提出了一种关于有限埃伦费斯特时间下混沌弹道腔散射矩阵S的半经典理论。通过将相空间表示与多反弹展开相结合,我们展示了相空间体积的刘维尔守恒如何将S分解为S = S(cl) + 符号在圆S(qm)中。短时间的经典贡献S(cl)产生确定性的透射本征值T = 0或1,而在对应于长时间随机贡献S(qm)的子空间内恢复量子遍历性。这为两相流体模型提供了微观基础,其中腔同时像经典腔和量子腔一样起作用,并解释了最近的数值数据,这些数据显示在深半经典极限下量子混沌输运中普遍性的破坏。我们表明,在此极限下散粒噪声功率的法诺因子消失,而弱局域化仍然具有普遍性。