Buzek Vladimír, Orszag Miguel, Rosko Marián
Research Center for Quantum Information, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia.
Phys Rev Lett. 2005 Apr 29;94(16):163601. doi: 10.1103/PhysRevLett.94.163601. Epub 2005 Apr 26.
Using tools of quantum information theory we show that the ground state of the Dicke model exhibits an infinite sequence of instabilities (quantum-phase-like transitions). These transitions are characterized by abrupt changes of the bi-partite entanglement between atoms at critical values kappa(j) of the atom-field coupling parameter kappa and are accompanied by discontinuities of the first derivative of the energy of the ground state. We show that in a weak-coupling limit (kappa1 < or = kappa < or = kappa2) the Coffman-Kundu-Wootters inequalities are saturated, which proves that for these values of the coupling no intrinsic multipartite entanglement (neither among the atoms nor between the atoms and the field) is generated by the atom-field interaction. We show that in the strong-coupling limit the entangling interaction with atoms leads to a highly sub-Poissonian photon statistics of the field mode.
利用量子信息论工具,我们证明了迪克模型的基态呈现出无穷序列的不稳定性(类量子相变)。这些相变的特征是,在原子 - 场耦合参数κ的临界值κ(j)处,原子间的二分纠缠会发生突变,并且伴随着基态能量一阶导数的不连续性。我们表明,在弱耦合极限(κ1≤κ≤κ2)下,科夫曼 - 昆杜 - 伍特斯不等式饱和,这证明对于这些耦合值,原子 - 场相互作用不会产生内在的多体纠缠(原子之间以及原子与场之间均不会产生)。我们还表明,在强耦合极限下,与原子的纠缠相互作用会导致场模的光子统计呈现高度亚泊松分布。