Suppr超能文献

脉冲神经元学习相位延迟:哺乳动物如何发展听觉时间差异敏感性。

Spiking neurons learning phase delays: how mammals may develop auditory time-difference sensitivity.

作者信息

Leibold Christian, van Hemmen J Leo

机构信息

Physik Department, Technische Universität München, 85747 Garching bei München, Germany.

出版信息

Phys Rev Lett. 2005 Apr 29;94(16):168102. doi: 10.1103/PhysRevLett.94.168102. Epub 2005 Apr 26.

Abstract

Time differences between the two ears are an important cue for animals to azimuthally locate a sound source. The first binaural brainstem nucleus, in mammals the medial superior olive, is generally believed to perform the necessary computations. Its cells are sensitive to variations of interaural time differences of about 10 micros. The classical explanation of such a neuronal time-difference tuning is based on the physical concept of delay lines. Recent data, however, are inconsistent with a temporal delay and rather favor a phase delay. By means of a biophysical model we show how spike-timing-dependent synaptic learning explains precise interplay of excitation and inhibition and, hence, accounts for a physical realization of a phase delay.

摘要

两耳之间的时间差异是动物在方位上定位声源的重要线索。第一个双耳脑干核团,在哺乳动物中是内侧上橄榄核,一般认为它执行必要的计算。其细胞对大约10微秒的双耳时间差异变化敏感。对这种神经元时间差异调谐的经典解释基于延迟线的物理概念。然而,最近的数据与时间延迟不一致,而更倾向于相位延迟。通过一个生物物理模型,我们展示了依赖于尖峰时间的突触学习如何解释兴奋和抑制的精确相互作用,从而说明了相位延迟的物理实现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验