Zarkadis Antonios K, Georgakilas Vassilios, Perdikomatis Gerasimos P, Trifonov Anton, Gurzadyan Gagik G, Skoulika Stavroula, Siskos Michael G
Department of Chemistry, University of Ioannina, 451 10 Ioannina, Greece.
Photochem Photobiol Sci. 2005 Jun;4(6):469-80. doi: 10.1039/b502089a. Epub 2005 May 11.
The photochemistry of three structurally very similar triphenylmethylsilanes 1, 2, 3 [p-X-C(6)H(4)-CPh(2)-SiMe(3): X = PhCO, 1; H, ; Ph(OCH(2)CH(2)O)C, 3] is described by means of 248 and 308 nm nanosecond laser flash photolysis (ns-LFP), femtosecond LFP, EPR spectroscopy, emission spectroscopy (fluorescence, phosphorescence), ns-pulse radiolysis (ns-PR), photoproduct analysis studies in MeCN, and X-ray crystallographic analysis of the two key-compounds 1 and 2. The photochemical behavior of 1, 2 and 3 is discussed and compared with that of a fourth one, 4, bearing on the p-position an amino group (X = Me(2)N) and whose detailed photochemistry we reported earlier (J. Org. Chem., 2000, 65, 4274-4280). Silane 1 undergoes on irradiation with 248 and 308 nm laser light a fast photodissociation of the C-Si bond giving the p-(benzoyl)triphenylmethyl radical (1*) with a rate constant of k(diss)= 3 x 10(7) s(-1). The formation of 1* is a one-quantum process and takes place via the carbonyl triplet excited state with high quantum yield (Phi(rad)= 0.9); the intervention of the triplet state is clearly demonstrated through the phosphorescence spectrum and quenching experiments with ferrocene (k(q)= 9.3 x 10(9) M(-1) s(-1)), Et(3)N (1.1 x 10(9) M(-1) s(-1)), and styrene (3.1 x 10(9) M(-1) s(-1)) giving quenching rate constants very similar to those of benzophenone. For comparative reasons radical 1* was generated independently from p-(benzoyl)triphenylmethyl bromide via pulse radiolysis in THF and its absorption coefficient at lambda(max)= 340 nm was determined ([epsilon]= 27770 M(-1) cm(-1)). We found thus that the p-PhCO-derivative 1 behaves similar to the p-Me(2)N one (the latter giving the p-(dimethylamino)triphenylmethyl radical with Phi(rad)= 0.9), irrespective of their completely different ground state electronic properties. In contrast, compounds 2, 3 that bear only the aromatic chromophore give by laser or lamp irradiation both, (i) radical products [Ph(3)C* and p-Ph(OCH(2)CH(2)O)C-C(6)H(4)-C()Ph(2), respectively] after dissociation of the central C-Si bond (Phi(rad)= 0.16), and (ii) persistent photo-Fries rearrangement products (of the type of 5-methylidene-6-trimethylsilyl-1,3-cyclohexadiene) absorbing at 300-450 nm and arising from a 1,3-shift of the SiMe(3) group from the benzylic to the ortho-position of the aromatic ring (Phi approximately 0.85 for 2). Using fs-LFP on 2 we showed that the S(1) state recorded at 100 fs after the pulse decays on a time scale of 500 fs giving Ph(3)C through C-Si bond dissociation. In a second step and within the next 10 ps trityl radicals either escape from the solvent cage (the quantum yield of Ph(3)C* formation Phi(rad)= 0.16 was measured with ns-LFP), or undergo in-cage recombination to photo-Fries products. Thus, singlet excited states (S(1)) of the aromatic organosilanes (2, 3) prefer photo-Fries rearrangement products, while triplet excited states (1, 4) favor free radicals. Both reactions proceed via a common primary photodissociation step (C-Si bond homolysis) and differentiate obviously in the multiplicity of the resulting geminate radical pairs; singlet radical pairs give preferably photo-Fries products following an in-cage recombination, while triplet radical pairs escape the solvent cage (MeCN). The results demonstrate the crucial role which is played by the chromophore which prescribes in a sense, (i) the multiplicity of the intervening excited state and consequently that of the resulting geminate radical pair, and (ii) the dominant reaction path to be followed: the benzophenone- and anilino-chromophore present in silanes 1 and 4, respectively, impose effective intersystem crossing transitions (k(isc)= 10(11) s(-1) and 6 x 10(8) s(-1), respectively) leading to triplet states and finally to free radical products, while the phenyl chromophore in 2 and 3, possessing ineffective isc (k(isc)= 6 x 10(6) s(-1)) leads to photo-Fries product formation via the energetic high lying S(1) state [approximately 443 kJ mol(-1)(106 kcal mol(-1))].
通过248和308 nm纳秒激光闪光光解(ns-LFP)、飞秒LFP、电子顺磁共振光谱、发射光谱(荧光、磷光)、纳秒脉冲辐解(ns-PR)、在乙腈中的光产物分析研究以及对两种关键化合物1和2的X射线晶体学分析,描述了三种结构非常相似的三苯基甲基硅烷1、2、3 [p-X-C(6)H(4)-CPh(2)-SiMe(3):X = PhCO,1;H,2;Ph(OCH(2)CH(2)O)C,3]的光化学性质。讨论了1、2和3的光化学行为,并与第四种化合物4进行了比较,4在对位带有氨基(X = Me(2)N),我们之前已报道过其详细的光化学性质(《有机化学杂志》,2000年,65卷,4274 - 4280页)。硅烷1在248和308 nm激光照射下,C-Si键快速光解离,生成对 -(苯甲酰基)三苯基甲基自由基(1*),解离速率常数k(diss)= 3×10(7) s(-1)。1的形成是一个单量子过程,通过羰基三重态激发态发生且具有高量子产率(Phi(rad)= 0.9);通过磷光光谱以及与二茂铁(k(q)= 9.3×10(9) M(-1) s(-1))、三乙胺(1.1×10(9) M(-1) s(-1))和苯乙烯(3.1×10(9) M(-1) s(-1))的猝灭实验清楚地证明了三重态的介入,其猝灭速率常数与二苯甲酮的非常相似。出于比较目的,通过在四氢呋喃中脉冲辐解从对 -(苯甲酰基)三苯基甲基溴独立生成自由基1,并测定其在λ(max)= 340 nm处的吸收系数([epsilon]= 27770 M(-1) cm(-1))。因此我们发现,对 - PhCO衍生物1的行为类似于对 - Me(2)N衍生物(后者生成对 -(二甲氨基)三苯基甲基自由基,Phi(rad)= 0.9),尽管它们的基态电子性质完全不同。相比之下,仅带有芳族发色团的化合物2、3在激光或灯照射下,(i)中心中心中心C-Si键解离后会产生自由基产物[分别为Ph(3)C和对 - Ph(OCH(2)CH(2)O)C-C(6)H(4)-C()Ph(2)](Phi(rad)= 0.16),以及(ii)在300 - 450 nm处有吸收的持久性光弗里斯重排产物(5 - 亚甲基 - 6 - 三甲基甲硅烷基 - 1,3 - 环己二烯类型),其由SiMe(3)基团从苄基位置向芳环邻位的1,3 - 迁移产生(对于2,Phi约为0.85)。对2使用飞秒LFP表明,脉冲后100 fs记录的S(1)态在500 fs的时间尺度上衰减,通过C-Si键解离产生Ph(3)C*。在第二步且在接下来的10 ps内,三苯甲基自由基要么从溶剂笼中逸出(用ns-LFP测量的Ph(3)C*形成的量子产率Phi(rad)= 0.16),要么在笼内重组为光弗里斯产物。因此,芳族有机硅烷(2、3)的单重激发态(S(1))优先生成光弗里斯重排产物,而三重激发态(1、4)有利于自由基生成。这两个反应都通过一个共同的初级光解离步骤(C-Si键均裂)进行,并且在所得双自由基对的多重性上有明显差异;单重自由基对在笼内重组后优选产生光弗里斯产物,而三重自由基对则从溶剂笼(乙腈)中逸出。结果表明,发色团起着关键作用,在某种意义上规定了(i)介入激发态的多重性以及因此所得双自由基对的多重性,以及(ii)要遵循的主要反应路径:硅烷1和4中分别存在的二苯甲酮和苯胺基发色团会引发有效的系间窜越跃迁(分别为k(isc)= 10(11) s(-1)和6×10(8) s(-1)),导致三重态并最终生成自由基产物,而2和3中的苯基发色团,其系间窜越无效(k(isc)= 6×10(6) s(-1)),通过能量较高的S(1)态[约443 kJ mol(-1)(106 kcal mol(-1))]导致光弗里斯产物的形成。