Carrasco Emilce, Casper Diana, Werner Peter
Albert Einstein College of Medicine, Department of Neurology, Bronx, New York 10461, USA.
J Neurosci Res. 2005 Jul 1;81(1):121-31. doi: 10.1002/jnr.20541.
Cyclooxygenase (COX), a key enzymatic mediator of inflammation, is present in microglia and surviving dopaminergic neurons in Parkinson's disease (PD), but its role and place in the chain of neurodegenerative events is unclear. Epidemiologic evidence showed that regular use of nonsteroidal antiinflammatory drugs (NSAIDs), specifically non-aspirin COX inhibitors like ibuprofen, lowers the risk for PD; however, the putative cause-and-effect relationship between COX activity in activated microglia and neuronal loss was challenged recently. We examined whether neuronal COX activity is involved directly in dopaminergic cell death after neurotoxic insult. Using low concentrations of 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridium ion (MPP+), neurotoxicants used to model selective dopaminergic cell loss in PD, and cultures of embryonic rat mesencephalic neurons essentially devoid of glia, we tested whether the nonselective COX inhibitor ibuprofen attenuated 6-OHDA and MPP+ neurotoxicity. At levels close to its IC50 for both COX isoforms, ibuprofen protected dopaminergic neurons against 6-OHDA but not MPP+ toxicity. Experiments with selective inhibitors of COX-1 (SC-560) and COX-2 (NS-398 and Cayman 10404), indicated that COX-2, but not COX-1, was involved in 6-OHDA toxicity. Accordingly, 6-OHDA, but not MPP+, increased prostaglandin (PG) levels twofold and this increase was blocked by ibuprofen. At concentrations well above its IC50 for COX, ibuprofen also prevented MPP+ toxicity, but had only limited efficacy against loss of structural complexity. Taken together, our data suggest that selective 6-OHDA toxicity to dopaminergic neurons is associated with neuronal COX-2, whereas MPP+ toxicity is COX independent. This difference may be important for understanding and manipulating mechanisms of dopaminergic cell death.
环氧化酶(COX)是炎症的关键酶介质,存在于帕金森病(PD)的小胶质细胞和存活的多巴胺能神经元中,但其在神经退行性事件链中的作用和地位尚不清楚。流行病学证据表明,经常使用非甾体抗炎药(NSAIDs),特别是像布洛芬这样的非阿司匹林COX抑制剂,可降低患PD的风险;然而,活化小胶质细胞中的COX活性与神经元损失之间的假定因果关系最近受到了挑战。我们研究了神经元COX活性是否直接参与神经毒性损伤后的多巴胺能细胞死亡。使用低浓度的6-羟基多巴胺(6-OHDA)和1-甲基-4-苯基吡啶离子(MPP+),这两种神经毒素用于模拟PD中选择性多巴胺能细胞损失,以及基本上不含胶质细胞的胚胎大鼠中脑神经元培养物,我们测试了非选择性COX抑制剂布洛芬是否能减轻6-OHDA和MPP+的神经毒性。在接近其对两种COX同工酶的IC50水平时,布洛芬保护多巴胺能神经元免受6-OHDA的毒性,但对MPP+毒性无效。使用COX-1(SC-560)和COX-2(NS-398和Cayman 10404)的选择性抑制剂进行的实验表明,COX-2而非COX-1参与了6-OHDA毒性。因此,6-OHDA而非MPP+使前列腺素(PG)水平增加了两倍,并且这种增加被布洛芬阻断。在远高于其对COX的IC50浓度时,布洛芬也能预防MPP+毒性,但对结构复杂性丧失的疗效有限。综上所述,我们的数据表明,6-OHDA对多巴胺能神经元的选择性毒性与神经元COX-2相关,而MPP+毒性与COX无关。这种差异对于理解和操纵多巴胺能细胞死亡机制可能很重要。