Sumner J G, Jarvis P D
School of Mathematics and Physics, University of Tasmania GPO, Box 252-21, Hobart Tas, 7001, Australia.
J Math Biol. 2005 Jul;51(1):18-36. doi: 10.1007/s00285-004-0309-z. Epub 2005 Jun 6.
It is possible to consider stochastic models of sequence evolution in phylogenetics in the context of a dynamical tensor description inspired from physics. Approaching the problem in this framework allows for the well developed methods of mathematical physics to be exploited in the biological arena. We present the tensor description of the homogeneous continuous time Markov chain model of phylogenetics with branching events generated by dynamical operations. Standard results from phylogenetics are shown to be derivable from the tensor framework. We summarize a powerful approach to entanglement measures in quantum physics and present its relevance to phylogenetic analysis. Entanglement measures are found to give distance measures that are equivalent to, and expand upon, those already known in phylogenetics. In particular we make the connection between the group invariant functions of phylogenetic data and phylogenetic distance functions. We introduce a new distance measure valid for three taxa based on the group invariant function known in physics as the "tangle". All work is presented for the homogeneous continuous time Markov chain model with arbitrary rate matrices.
在受物理学启发的动态张量描述的背景下,有可能在系统发育学中考虑序列进化的随机模型。在这个框架下处理问题,可以在生物学领域利用数学物理学中成熟的方法。我们给出了具有由动态操作产生分支事件的系统发育学齐次连续时间马尔可夫链模型的张量描述。系统发育学的标准结果被证明可从张量框架推导出来。我们总结了量子物理学中一种强大的纠缠度量方法,并展示了其与系统发育分析的相关性。发现纠缠度量给出的距离度量与系统发育学中已知的距离度量等效且有所扩展。特别是,我们建立了系统发育数据的群不变函数与系统发育距离函数之间的联系。我们基于物理学中称为“缠结”的群不变函数,引入了一种对三个分类单元有效的新距离度量。所有工作都是针对具有任意速率矩阵的齐次连续时间马尔可夫链模型给出的。